Herbivore-initiated interaction cascades and their modulation by productivity in an African savanna

Robert M. Pringle*†§, Truman P. Young‡§, Daniel I. Rubenstein§, and Douglas J. McCauley*†

*Department of Biological Sciences, Stanford University, Stanford, CA 94305; †Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom; ‡Mopala Research Centre, P.O. Box 555, Nanyuki, Kenya; §Department of Plant Sciences, University of California, Davis, CA 95616; and †Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544

Communicated by Paul R. Ehrlich, Stanford University, Stanford, CA, November 6, 2006 (received for review September 15, 2006)

Despite conceptual recognition that indirect effects initiated by large herbivores are likely to have profound impacts on ecological community structure and function, the existing literature on indirect effects focuses largely on the role of predators. As a result, we know neither the frequency and extent of herbivore-initiated indirect effects nor the mechanisms that regulate their strength. We examined the effects of ungulates on taxa (plants, arthropods, and an insectivorous lizard) representing several trophic levels, using a series of large, long-term, ungulate-exclusion plots that span a landscape-scale productivity gradient in an African savanna. At each of six sites, lizards, trees, and the numerically dominant order of arthropods (Coleoptera) were more abundant in the absence of ungulates. The effect of ungulates on arthropods was mediated by herbaceous vegetation cover. The effect on lizards was simultaneously mediated by both tree density (lizard micro-habitat) and arthropod abundance (lizard food). The magnitudes of the experimental effects on all response variables (trees, arthropods, and lizards) were negatively correlated with two distinct measures of primary productivity. These results demonstrate strong cascading effects of ungulates, both trophic and nontrophic, and support the hypothesis that productivity regulates the strength of these effects. Hence, the strongest indirect effects (and thus, the greatest risks to ecosystem integrity after large mammals are extirpated) are likely to occur in low-productivity habitats.

Results

Direct and Indirect Effects of Ungulate Exclusion. Ungulates exerted a strong top-down effect on tree density and a weaker, marginally significant effect on herbaceous cover (P = 0.059; Table 1). There was no discernible effect of ungulate exclusion on arthropod abundance overall (Table 1); however, the abundance of at least some arthropod taxa did increase significantly in the absence of ungulates (multivariate ANOVA, F_{6,5} = 7,400, P < 0.0001). Univariate effects tested revealed that coleopterans (i.e., beetles, the numerically dominant arthropod in our samples, and the most common taxon found in lizard stomach contents) were nearly twice as abundant in exclosure plots as in paired control plots (Table 1). However, no other major order responded significantly to ungulate exclusion (all P > 0.1). Experimental block (i.e., location) was a significant term in all univariate models (Table 1), with abundances of all response variables increasing from less-productive to more-productive sites.

On average, lizard density was 61% greater in the absence of ungulates than in paired control plots (Table 1). However, the response varied across individual blocks from 24% to 214%. The block term was again a significant main effect, with lizard density
Herbaceous cover was a strong predictor of arthropod abundance; these experimental effects require knowledge of the principal predictors of lizard density; in this respect, our model of lizard density (adjusted \(R^2 = 0.78 \)). Further strengthening this inference, the log-response-ratio effect sizes (see Methods) of the experimental treatment on lizard and tree densities were positively correlated across blocks \((n = 6, R^2 = 0.64, F_{1,4} = 9.7, P = 0.04)\), as were the effect sizes of lizard density and arthropod abundance \((n = 6, R^2 = 0.85, F_{1,4} = 28.7, P = 0.006)\). In other words, the response of lizards to ungulate exclusion in a given block was proportional to the responses of both their arboreal microhabitat and their arthropod prey (independent of each other, as evidenced by the lack of correlation \([R^2 < 0.05]\) between tree density and arthropod abundance).

Drivers of Abundance

Understanding the mechanisms underlying these experimental effects requires knowledge of the principal determinants of abundance for each of the response variables. Herbaceous cover was a strong predictor of arthropod abundance \((F_{1,9} = 61.2, P < 0.0001)\), but tree density was not \((F_{1,9} = 3.1, P = 0.1)\); a linear model of arthropod abundance including only herbaceous cover as a predictor explained 84% of the variation in arthropod abundance. Herbaceous cover also explained most of the variation in the abundance of coleopterans alone, which was the arthropod order that displayed a significant response to ungulate exclusion \((F_{1,10} = 24.4, P < 0.001, R^2 = 0.68)\).

Both tree density and arthropod abundance were strong predictors of lizard density \((F_{1,9} = 14.7 \text{ and } 11.0, \text{ respectively; } P < 0.01 \text{ for both})\), so we retained both of these variables in our model of lizard density \((R^2 = 0.78)\). Further strengthening this inference, the log-response-ratio effect sizes (see Methods) of the experimental treatment on lizard and tree densities were positively correlated across blocks \((n = 6, R^2 = 0.64, F_{1,4} = 9.7, P = 0.04)\), as were the effect sizes of lizard density and arthropod abundance \((n = 6, R^2 = 0.85, F_{1,4} = 28.7, P = 0.006)\). In other words, the response of lizards to ungulate exclusion in a given block was proportional to the responses of both their arboreal microhabitat and their arthropod prey (independent of each other, as evidenced by the lack of correlation \([R^2 < 0.05]\) between tree density and arthropod abundance).

Primary Productivity as a Driver of Effect Size

The effects of herbivore exclusion on lizards, trees, total arthropods, and coleopterans were all significantly negatively correlated with productivity, as measured by the Normalized Difference Vegetation Index (NDVI) (see Methods) \((F_{1,9} = 24.4, P < 0.001, R^2 = 0.68)\). Because the relationship between NDVI and productivity can sometimes be skewed by variation in soil color \((P = 0.002)\), we verified these relationships, using peak herbaceous cover as a second, independent, measure of productivity at each block (see Methods). When peak herbaceous cover was substituted for NDVI as the measure of productivity, we observed the same negative, statistically significant relationships with effect size for all response variables. (For all, \(R^2 = 0.63, 0.86, 0.72, 0.04, 0.005, 0.02, \text{ and } 0.01, \text{ for lizard density, tree density, total-arthropod abundance, and coleopteran abundance, respectively.})

Discussion

Our results show that ungulate herbivores consistently depress the densities of trees, insectivorous lizards, and the dominant order of arthropods across a landscape-scale gradient in primary productivity. We infer that ungulate herbivory indirectly regulates lizard abundance by independently suppressing tree density (microhabitat availability) and beetle density (food availability). This chain of interactions involves both top-down effects (ungulate control of plant biomass) and bottom-up effects (resource control of arthropod and lizard densities); in this respect, our

Table 1. Means of response variables by treatment and results of ANOVA effect tests

<table>
<thead>
<tr>
<th>Response variable</th>
<th>Mean ± SE</th>
<th>Effect tests</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lizard density, indiv per ha</td>
<td>229 ± 99</td>
<td>475 ± 123</td>
<td>1</td>
<td>97,000</td>
<td>12.8</td>
<td>0.016</td>
</tr>
<tr>
<td>Herbivore treatment</td>
<td></td>
<td></td>
<td>5</td>
<td>142,000</td>
<td>18.8</td>
<td>0.003</td>
</tr>
<tr>
<td>Block location</td>
<td></td>
<td></td>
<td>5</td>
<td>7,570</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree density, indiv per ha</td>
<td>841 ± 126</td>
<td>1,150 ± 138</td>
<td>1</td>
<td>286,000</td>
<td>14.8</td>
<td>0.012</td>
</tr>
<tr>
<td>Herbivore treatment</td>
<td></td>
<td></td>
<td>5</td>
<td>190,000</td>
<td>9.6</td>
<td>0.013</td>
</tr>
<tr>
<td>Block location</td>
<td></td>
<td></td>
<td>5</td>
<td>19,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbaceous cover, %</td>
<td>66 ± 13</td>
<td>82 ± 8</td>
<td>1</td>
<td>0.0740</td>
<td>5.91</td>
<td>0.059</td>
</tr>
<tr>
<td>Herbivore treatment</td>
<td></td>
<td></td>
<td>5</td>
<td>0.1310</td>
<td>10.5</td>
<td>0.011</td>
</tr>
<tr>
<td>Block location</td>
<td></td>
<td></td>
<td>5</td>
<td>0.0125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total arthropods, indiv per effort</td>
<td>23 ± 7</td>
<td>26 ± 5</td>
<td>1</td>
<td>1.28</td>
<td>1.10</td>
<td>>0.3</td>
</tr>
<tr>
<td>Herbivore treatment</td>
<td></td>
<td></td>
<td>5</td>
<td>406.00</td>
<td>17.3</td>
<td>0.004</td>
</tr>
<tr>
<td>Block location</td>
<td></td>
<td></td>
<td>5</td>
<td>23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleopterans, indiv per effort</td>
<td>3.7 ± 2.8</td>
<td>6.9 ± 1.5</td>
<td>1</td>
<td>31.0</td>
<td>26.0</td>
<td>0.004</td>
</tr>
<tr>
<td>Herbivore treatment</td>
<td></td>
<td></td>
<td>5</td>
<td>27.2</td>
<td>22.8</td>
<td>0.002</td>
</tr>
<tr>
<td>Block location</td>
<td></td>
<td></td>
<td>5</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MS, mean square; indiv, individuals.
findings complement those of Croll et al. (26), who showed that foxes on islands exerted indirect effects via a pathway that comprised both top-down (fox predation on seabirds) and bottom-up (nutrient enrichment of island plants by seabird guano) processes. Furthermore, the strength of the direct and indirect effects documented here was greatest in low-productivity sites. Collectively, these results not only confirm the importance of large herbivores as “strong interactors” (14, 27) but also suggest that they will be stronger interactors where productivity is low.

Although there was no significant effect of ungulates on total arthropod abundance, beetles were nearly twice as abundant in enclosure plots as in control plots. Without greater taxonomic resolution, our data offer little insight as to why coleopterans were more sensitive to the presence of ungulates than other arthropod taxa (e.g., perhaps bruchid seed predators responded to increased seed production in enclosure plots). Nevertheless, coleopterans accounted for 22% of all arthropods in our samples and are the most abundant prey item in stomach contents of L. keniensis from this area (R.M.P., unpublished data). These data, and the strong positive correlation between the effect sizes of lizard density and arthropod abundance, strongly suggest that lizards’ positive response to ungulate exclusion stems at least in part from increased prey availability.

The observed negative relationships between productivity and the effect sizes of ungulate removal would be expected in either of two nonexclusive scenarios. First, because compensatory regrowth of plants following herbivory is faster in high-productivity sites, herbivores have a relatively lower net impact on plant biomass in those areas (24). This process would be expected to dampen cascading effects as well, because more productive plant communities would absorb the impacts of herbivory and buffer the remainder of the community (21). However, a similar result might arise if plants differed systematically in edibility along the resource gradient [i.e., were better defended in higher productivity sites, where the effects of ungulate exclusion were weakest (21, 28)].

We consider the former scenario more likely in our system. Herbaceous species were clearly edible to arthropods in high-productivity blocks, as shown by the increase in arthropod abundance with increasing herbaceous productivity and percent cover. Moreover, there is a well established relationship between primary productivity and ungulate consumption rates in range-lands (29), which argues against the hypothesis that plants overall were less palatable in the high-productivity sites. However, we cannot conclusively rule out the latter scenario for the direct effect of ungulates on tree density (and hence for the tree-density-mediated component of the indirect effect of ungulates on lizards). Acacia drepanolobium, the dominant tree in the three highest productivity sites, is defended by symbiotic ants (30) and appears to suffer lower rates of elephant browsing than either Acacia brevispica or Acacia mellifera (R.M.P. and T.P.Y., unpublished observations). Because the three highest-productivity sites were also those where A. drepanolobium was dominant, it is possible that plant palatability contributed to the clumping of the high-productivity points in Fig. 2A and B.

Differences in the intensity of predation on lizards are unlikely to have contributed strongly to the patterns we observed. Our experimental treatment did not exclude most potential predators of lizards. Indeed, snake densities increase approximately twofold when ungulates are absent (18), as does the presence and activity of the bird community, in which >70% of the species are insectivores or carnivores that are capable of preying on lizards (31). Moreover, although it is possible that the (marginally) greater grass cover in enclosure plots would protect lizards on the ground, movement between trees is rare in adult L. keniensis (32).

Complex interactions, such as those documented in this study, make it difficult to predict the community-wide ramifications of ecological perturbations, especially if the strength of indirect effects is highly sensitive to environmental variation. Our experimental blocks varied in resource availability (Fig. 1) and vegetation structure. The negative relationships between effect size and productivity across taxa, as well as the significant block terms in our models, suggest that indirect effects are highly sensitive to changes in these parameters. Thus, fully understanding the implications of major ecological perturbations, such as the extirpation of large mammals, may require examining whole communities at the landscape scale.

These conclusions are important in light of the progressive continent-wide declines of many African ungulate species (33, 34), and, indeed, of large herbivores worldwide (17). Our study indicates that such declines have cascading ramifications com-

Fig. 2. Effect sizes (log$_e$ response ratios) of ungulates on four response variables regressed against aboveground primary productivity (as measured by NDVI): (A) lizard density, (B) tree density, (C) total-arthropod abundance, and (D) abundance of coleopterans only. Numbers represent individual blocks and correspond to those presented in Fig. 1. All relationships remain statistically significant after sequential Bonferroni corrections of α (0.05, 0.025, 0.017, and 0.013).
parable with those observed in other systems after the loss of predators (35) and thus, that large-bodied herbivores, where they still exist, might be equally critical to ecosystem function. Moreover, we would expect these cascades to be most profound in areas of intrinsically low primary productivity, such as at the drier ends of rainfall gradients. Finally, we suggest that ungrazed-initiated cascades were important in the history and evolution of ecosystems that today are bereft of large herbivores and that, although many of these cascades went extinct at the end of the Pleistocene along with the large herbivores that caused them, the legacies of the cascades may well remain (36, 37).

Methods

Study Sites and Experimental Design. We conducted our research between May 2004 and December 2005 at the Mpala Research Centre (0°20' N, 36°53' E, 1,650–1,800 m above sea level) in the Laikipia District in central Kenya. Rainfall averages 450–550 mm/yr in a weakly trimodal annual pattern. The diverse ungulate fauna includes zebras (Equus burchelli and Equus grevyi), impalas (Aepyceros melampus), Grant’s gazelles (Gazella granti), elands (Taurotragus oryx), elephants (Loxodonta africana), giraffes (Giraffa camelopardalis), hartebeests (Alcelaphus buselaphus), buffalos (Syncerus caffer), and cattle (Bos indicus). Native large predators include lions (Panthera leo), leopards (Panthera pardus), cheetahs (Acinonyx jubatus), and hyenas (Crocuta crocuta and Hyaena hyaena).

With densities approaching 1,000 per ha in places, lizards are the most abundant group of vertebrates in this habitat. We focused on the small (3- to 4-cm snout–vent length, 1–2 g), arboreal, diurnal gecko L. keniensis Parker, which is by far the most abundant lizard in this community (~94% of all individuals). This species forages for small arthropods both on its host trees and in brief forays to the ground. Coleopterans were the most abundant prey item in 14 gekko stomach contents examined as part of an ongoing study (R.M.P., unpublished data), whereas ants are actively avoided (32). Predators of L. keniensis include bushbabies (Galago senegalensis), snakes, and birds.

We quantified direct and indirect effects of large mammals, using six pairs of herbivore-exclusion and control plots (to which we refer throughout the paper as “exlosure” and “control”). All exclosure plots consisted of 2.4-m-high electric fences that exclude mammals >15 kg, but importantly, they do not exclude the saurophagous predators listed above. The locations of the six experimental blocks span ~12 km. Three are located on volcanic clay vertisols, which are highly productive (200 × 200 m, established in 1995; see ref. 38). The other three are located on sandy loams derived from metamorphic basement rock, which are variable in productivity (70 × 70 m, established in 1999; see ref. 39) (Fig. 1). The vegetation communities in these two soil types share many of the same species, but at different relative abundances. Woody species common to both communities include A. brevispica, A. drepanolobium, A. mellifera, Balanites aegyptiaca, Boscia angustifolia, and Rhus natalensis. A. drepanolobium was dominant in the three blocks underlain by clay soils, whereas A. brevispica, A. mellifera, and Acacia etbaica were variously dominant in the three blocks underlain by sandy soils (see refs. 35 and 36 for full details of the exclosure plots and vegetation communities).

Intensive aerial wildlife censuses of Laikipia and repeated dung surveys in our study sites have indicated that the background densities of native ungulates are similar across the study communities (40, 41). Densities of cattle (the mammal with the greatest biomass density in our study area) were experimentally controlled at the three clay-soil blocks to match the stocking rates on the remainder of Mpala Ranch, where our other three blocks were located (41).

We used two indices of aboveground primary productivity at each of our blocks (i.e., exclusion–control pairs). Our preferred index was the NDVI, because it simultaneously reflects the production of both woody and herbaceous species, and because it has been shown to correlate closely with productivity per se at our study sites (N. Georgiadi, Mpala Research Centre, Kenya, personal communication; see also refs. 25 and 42). We calculated mean NDVI values from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images (250-m resolution) taken at 16-day intervals throughout the study period. However, because the relationship between NDVI and productivity can sometimes be skewed by soil color (25), we also used peak herbaceous cover (i.e., herbaceous cover measured in exclosure plots; see Vegetation and Arthropod Surveys) as a second measure of productivity at each block. NDVI and peak herbaceous cover were positively correlated across our sites (n = 6, R² = 0.70). The NDVI data revealed a productivity gradient that spanned the six blocks, with greater values on average at the clay-soil blocks and broad variability across the sand-soil blocks (Fig. 1).

Lizard Censuses. Within each exclosure and control plot, we randomly selected four 25 × 25 m study quadrats without replacement. We censused lizards within these quadrats (the first two quadrats per plot during June–September 2004 and the other two during June–September 2005), using the mark–resight procedure and analysis described by Heckel and Roughgarden (43), with the modifications incorporated by Schoener et al. (44). These censuses were randomly ordered within each field season to prevent any short-term temporal biases. Densities did not differ between years (F1,22 = 0.04, P > 0.8). We therefore took the mean of the density estimates from all four censuses in each plot to represent overall density for that plot (n = 12 plots). In all, we made >2,600 lizard observations.

Vegetation and Arthropod Surveys. In each study quadrat, we quantified two hypothesized determinants of lizard density: microhabitat availability (tree density) and prey availability (arthropod abundance). We also quantified herbaceous vegetation cover, which we used as a second measure of productivity (see Study Sites and Experimental Design), and which, along with tree density, was a hypothesized determinant of arthropod abundance.

We counted all trees ≥1-m tall in each quadrat (only 0.6% of the lizards sighted occupied trees <1-m tall). We estimated aerial arthropod abundance by walking two intersecting transects bisecting each quadrat on sunny days between 1000 and 1600 and making 30 sweeps per transect with a 39-cm-diameter sweep net at ~0.5 m above ground level. We estimated terrestrial arthropod abundance, using pitfall traps (plastic cups of 9.5-cm diameter). Two traps per quadrat were deployed concurrently for three consecutive days. All arthropods were frozen, counted, and identified to order. The data from both sampling methods were added together for each quadrat and then averaged across the four quadrats in each plot to give an estimate of overall capture rate per unit effort for that plot. Ants, which are ubiquitous at our sites but are not eaten by L. keniensis (32), were excluded from analyses a priori. In all, we collected and identified to order >3,000 non-ant arthropods.

We used a 0.5-m frame with 10 pins to measure the percentage of herbaceous cover, counting presence vs. absence of vegetation for each pin. In the three clay-soil blocks, cover was measured four times (June and December 2004 and 2005) at 100 locations in the central ha of each 4-ha plot (1,000 pins per plot per survey) as part of ongoing monitoring (see ref. 41). In the three sand-soil blocks, we measured cover in June and September 2004 and 2005 at each of 36 locations in the central 40 × 40 m of each plot (360 pins per plot per survey).

Statistical Analyses. Because our primary interest was at the landscape scale, and because we wanted to avoid potential spatial
autocorrelation, we treated our data conservatively, averaging measurements from our four nested quadrats within each plot to obtain a single value for each response variable in that plot (n = 12 plots; one enclosure and one control in each of six blocks).

We tested for effects of the experimental treatment (herbivore exclusion), using ANOVA. Because our blocks were arrayed along a gradient in productivity (Fig. 1), we tested for treatment effects by using the model

\[y_{ijk} = \mu + H_i + \beta_j + e_{ijk}, \]

in which \(\mu \) is the overall mean, \(H_i \) represents the \(i \)th experimental block, \(\beta_j \) represents the \(j \)th experimental treatment (ungulate presence/absence), and \(e_{ijk} \) is the error term. Because there was no replication of treatments within each block, this model does not contain an interaction term (45). For arthropods, we first analyzed total abundance according to the model above. We then examined the five most abundant arthropod orders (Coleoptera > Orthoptera > Hemiptera > Araneae > Diptera, which collectively accounted for 78% of all non-ant arthropods), using multivariate ANOVA with treatment and block as factors. We report the Roy’s Greatest Root test statistic because of its relative high power and robustness when data satisfy the assumptions of univariate ANOVA (46). After a significant multivariate ANOVA, we analyzed the taxa individually according to the ANOVA model above (using sequential Bonferroni corrections; see ref. 47). We based inferences about the mechanisms underlying any treatment effects on arthropods and lizards on (i) the results from multiple regression models and (ii) correlations between the effect sizes of the response variables (see below).

We built two multiple-regression models to elucidate the drivers of arthropod abundance and lizard density, respectively. We hypothesized that arthropod abundance would be driven by tree density and herbaceous cover and that lizard density would be driven by tree density and arthropod abundance. If a predictor variable did not have a statistically significant effect, it was dropped from the model.

Finally, we used linear regression to examine the relationship between productivity and the strength of the treatment effects. Effect sizes were calculated as log_2 ratios (48) of response variables in the absence and presence of herbivores:

\[\ln \left(\frac{\text{variable}_{\text{control}}}{\text{variable}_{\text{exclusion}}} \right). \]

Effect sizes of four response variables were regressed on NDVI, again by using sequential Bonferroni corrections to evaluate statistical significance. When these relationships were significant, we verified that the same was true and then used our alternative measure of productivity, peak herbaceous cover.

The assumptions of ANOVA and regression were satisfied by the untransformed data in all cases. The predictor variables in the two multiple regression models were not strongly collinear (variance inflation factor < 1.35 for both pairs of predictors). All analyses were performed with JMP version 5.1 (SAS Institute, Cary, NC).

We thank M. Mohammed and J. Ekadeli for field assistance; D. J. Augustine, N. Georgiadis, N. Owlero, J. Roughgarden, G. C. Daily, F. Keesing, and the Office of the President of the Republic of Kenya for enabling various facets of the research; and P. R. Ehrlich, R. T. Paine, G. Ceballos, J. R. Goheen, T. M. Palmer, D. F. Doak, O. J. Schmitz, E. Pringle, L. Buckley, B. Brosti, A. Wolf, C. Lunch, C. Riginos, and K. Vehlen for comments and discussion. This work was supported by the James Smithson Fund of the Smithsonian Institution (to A. Smith), National Geographic Society Grant 4691-91, National Science Foundation Grants BSR-97-07477 and BSR-03-16402, African Elephant Program of the U.S. Fish and Wildlife Service Grant 98210-0-G563 (to all T.P.Y.), the William R. and Sara Hart Kimball graduate fellowships (to R.M.P.), and the Sherwood Family Foundation (to G. C. Daily).
Ungulate herbivory: Indirect effects cascade into the treetops

Andrew J. Larson*† and Robert T. Paine‡

*College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100; and ‡Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800

Hanges in population numbers of top (apex) predators are increasingly acknowledged to promote major shifts in ecosystem organization. The early evidence was both experimental and observationally based: for instance, predatory starfish can influence the ability of species to coexist on marine rocky shores (1); bass, by consuming grazing minnows, alter primary production in freshwater streams (2); and sea otters, by eating sea urchins, themselves major consumers of marine benthic algae, indirectly exert a major influence on the biological performance of these primary producers (3). The initial impression was that such potent top-down effects were “all wet” (4) and that terrestrial ecosystems might be fundamentally different from aquatic ones; in this issue of PNAS, Pringle et al. (5) add to a growing body of evidence suggesting the contrary. Some reasons for this initial impression seem obvious: many terrestrial apex predators have been hunted to near or local extinction; many of the more charismatic species now enjoy stringent legal protection, which hampers or denies any manipulation; and terrestrial ecosystems themselves are less experimentally tractable than their aquatic counterparts, in part because of extreme longevity of the plant community and because of the great spatial scale required to retain a semblance of natural reality. Nonetheless, an important role for apex predators is increasingly recognized as these predators persist in fragmented habitats (e.g., coyotes; ref. 6), are introduced to islands (e.g., fox−seabird−vegetation linkages in the Aleutian Islands; ref. 7), or are reintroduced to historic habitats (e.g., wolves into Yellowstone; ref. 8), to grow better when not consumed by conventional forage, might be expected to controls. Plants, i.e., trees and more megaherbivore exclusions and their controls (sites with normal grazer access) were established on productive volcanic clays and compared with a second set within 12 km on less productive sandy loams. The ungulate herbivore exclusion, that is, all grazing mammals >15 kg, included a nine-species guild of such favorites as elephants and zebras but also domestic cattle and was enforced by a 2.4-m high electrified fence obviously entirely permeable by insects, snakes, lizards, birds, and smaller mammals.

Ecosystems with a low intrinsic primary production capacity will be more susceptible to anthropogenic modifications.

The exclosure treatment reduced ungulate density to zero over the manipulation’s duration: this is analogous to an experimental system in which “predation” on these large ungulates was 100% efficient. Pringle et al. (5) found greater productivity at all six ungrazed sites relative to controls. Plants, i.e., trees and more conventional forage, might be expected to grow better when not consumed by a phalanx of large-bodied consumers, but grazing is also known to stimulate growth (12). The research “gold” comes from the well-documented but certainly incomplete cascade of related indirect effects. Associated with the increase in tree density and profile complexity was a 61% increase in lizard density. Their major prey, beetles (22% of diet), marched to the same drummer: greater production yields more beetles. One subtlety is the dual mechanisms by which ungulate exclusion increased lizard densities: density of beetles, a major lizard prey item, increased, as did arboreal habitat available for lizards to colonize. Multiple mechanisms linking ungulate herbivory to lizard density certainly support the idea that ungulates initiate rampant indirect effects. Perhaps the most significant finding of Pringle et al. (5) is that the strength of the indirect influences was negatively correlated with site productivity; that is, at less-productive sites, exclusion of megaherbivores generated a greater effect. The environmental message seems clear: ecosystems with a low intrinsic primary production capacity, generated, for instance, by low annual rainfall or relatively reduced soil nutrients, will be both more susceptible to and less capable of responding to anthropogenic modifications than more productive sites. However, the relationship between effect strength and productivity carries with it other implications. Namely, Pringle et al. show how the nature of interspecific interactions in putatively similar communities changes in response to forcing by a “global” variable, in this case productivity. By documenting varying strengths of indirect effects of herbivores along a productivity gradient, Pringle et al. introduce a new twist to questions about community organization in terrestrial habitats (albeit one that has been explored in intertidal communities; ref. 13): how do species interactions within a given community vary along an environmental gradient? This added detail foreshadows a type of investigation, and a conceptual framework, that may help transition community ecology from a “science of place” to a science that subsumes place. Studies that look for general trends across widely dispersed sites (14) approach this challenge from one direction; the method used in the present case (5), characterizing variation in species interactions within a community in response to environmental heterogeneity, ap-

Author contributions: A.J.L. and R.T.P. wrote the paper.
The authors declare no conflict of interest.
See companion article on page 193.
†To whom correspondence should be addressed. E-mail: a97564@u.washington.edu.
© 2006 by The National Academy of Sciences of the USA
proaches the problem from a different, yet informative, perspective.

Pringle et al. (5) barely discuss the species composition of what must be a complex and interactive community. Ants are mentioned and help defend the dominant Acacia trees, much as in Janzen’s early neotropical studies (15). But what role do arachnid predators play? In an old-field ecosystem (16), spider-specific identity and abundance determined how herbivorous grasshoppers, plant nutrient level, and therefore primary production interacted: spiders in abundance reduced herbivore activity and thus facilitated plant performance. Could the “herbaceous species” studied by Pringle et al. (5) have benefited from such influences? The answer depends on effect magnitude. Similar relationships should be sought in other trophic groups. Insectivorous birds could have been major players in the indirectly enhanced food web. Their exclusion has been shown experimentally to diminish plant production (17). In a neotropical forest, bird presence reduced insect damage to canopy foliage, although not in the less-productive understory (18). Finally there is the issue of snakes, apparently with numbers increased in the absence of ungulates (5). Did these eat small mammals and birds? By temperate-zone standards, the question is not trivial because small rodents can determine the survival of tree seeds and seedlings (19). The above questions are not criticisms: no ecological field study yet, and possibly ever, can be trichly complete. The question about indirect effects is always not whether they occur but rather, what is their magnitude and, therefore, significance.

Lastly, we turn to the problem of experimental intractability due to long-lived, slow-growing plants in terrestrial ecosystems. Suppose comparisons of enclosure and control sites had been conducted after 20 years, 50 years, or more. How different would the results have been? Fig. 1 illustrates an example of ecological change wrought by denying Roosevelt elk access to a portion of the Olympic rainforest. In this instance, grass biomass plummeted, herbaceous understory plant diversity declined, woody shrubs aggressively filled the site, and seedling and sapling density of the tree western hemlock (Tsuga heterophylla) increased (20, 21). In both the Olympic rainforest and the African savanna, it would be fascinating to know the long-term consequence of a maintained herbivore-free treatment. Structural development in the Olympic rainforest proceeds over several centuries (22), indicating, as we have alluded for the African savanna, that the transition to an herbivore-free equilibrium will be protracted. Obviously, a temperate rainforest is conspicuously distinct from an African savanna. However, both ecosystems share one feature in common: exclusion of ungulate herbivores increases the density of long-lived, habitat-forming trees. In the African savanna, this mediated an indirect effect of ungulates on arboreal lizards. Similarly, indirect effects of ungulate herbivory on epiphytic plants, for which the Olympic rainforest is famous, as well as other canopy biota will likely propagate through the trees. How will the species assemblage and the strength of interspecific interactions change as populations of trees fully respond (i.e., reach maximum size and structural complexity) to release from herbivory? Do the indirect effects of ungulate herbivory follow an independent “successional” trajectory themselves? Only long-term manipulative ecological studies can provide definitive answers to these questions.