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The search for predictions of species diversity across environmental gradients has
challenged ecologists for decades. The humped-back model (HBM) suggests that plant
diversity peaks at intermediate productivity; at low productivity few species can tolerate
the environmental stresses, and at high productivity a few highly competitive species
dominate. Over time the HBM has become increasingly controversial, and recent studies
claim to have refuted it. Here, by using data from coordinated surveys conducted
throughout grasslands worldwide and comprising a wide range of site productivities, we
provide evidence in support of the HBM pattern at both global and regional extents. The
relationships described here provide a foundation for further research into the local,
landscape, and historical factors that maintain biodiversity.

D
espite a long history of research, the nature
of basic patterns between environmental
factors and biological diversity remain
poorly defined. A notable example is the
relationship between plant diversity and

productivity, which has stimulated a long-running
debate (1–6). A classic hypothesis, the humped-
back model (HBM) (7), states that plant species
richness peaks at intermediate productivity, tak-
ing above-ground biomass as a proxy for annual
net primary productivity (7–9). This diversity peak
is driven by two opposing processes. In unproduc-
tive ecosystems with low plant biomass, species
richness is limited by abiotic stress, such as in-
sufficient water and mineral nutrients, which
few species are able to tolerate. In contrast, in the
productive conditions that generate high plant
biomass, competitive exclusion by a small num-
ber of highly competitive species is hypothesized
to constrain species richness (7–9). Other mech-
anisms that may explain the unimodal relation-
ship between species richness and biomass include
disturbance (7, 10), evolutionary history and dis-
persal limitation (11, 12), and the reduction of total
plant density in productive communities (13).
Since its initial proposal, a range of studies

have both supported and rejected the HBM, and
three separate meta-analyses reached different

conclusions (14–17). Although this inconsistency
may indicate a lack of generality of the HBM, it
may instead reflect a sensitivity to study meth-
odology, including the plant community types
considered, the taxonomic scope, the range of
site productivities sampled, the spatial grain and
extent of analyses (17, 18), and the particular
measure of net primary productivity used (19).
The questions therefore remain open as to what
the form of the relationship between diversity
and productivity is, and whether theHBM serves
as a useful and general model for grassland eco-
system theory and management.
We quantified the form and the strength of the

richness-productivity relationship by using glob-
ally coordinated surveys (20), which yielded scale-
standardized data and were distributed across
30 sites in 19 countries and six continents (Fig. 1).
Collectively, our samples spanned a broad range
of biomass production (from 2 to 5711 gm−2) and
grassland community types, including natural and
managed (pastures and meadows) grasslands
over a wide range of climatic zones (temperate,
Mediterranean, and tropical), and altitudes (low-
land to alpine) (table S1). Our protocol involved
sampling 64 1-m2 quadrats within 8-m-by-8-m
grids (18, 21). At each site, between 2 and 14 grids
were sampled, thus resulting in 128 to 896 quad-

rats per site. In each 1-m2 quadrat, we identified
and counted all plant species and harvested above-
ground biomass and plant litter. Litter production
is a function of annual net primary productivity
in grasslands and can have profound effects on
the structure and functioning of communities,
from altering nutrient cycling to impeding vege-
tative growth and seedling recruitment (22, 23),
thereby also playing a major role in driving com-
munity structure. Indeed, the HBM was origi-
nally defined in terms of live biomass plus litter
material (7, 8). Most of the sites in our survey
were subject to some formofmanagement, usually
livestock grazing or mowing. In this respect,
our sites are representative ofmost of theworld’s
grasslands. Our sampling was conducted at
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least 3 months after the last grazing, mowing, or
burning event and at the annual peak of live bio-
mass, which, when coupledwith litter, constitutes
a reliable measure of annual net aboveground pro-
duction in herbaceous plant communities (24).
Our results strongly support the HBM of the

plant richness-productivity relationship. By using
a global-extent regression model (N = 9631 1-m2

quadrats) (21), we found that plant richness
formed a unimodal relationship with productivity
(Fig. 2A) that is characterized by a highly sig-
nificant concave-down quadratic regression [neg-
ative binomial generalized linear model (GLM);
Table 1]. This relationship was not sensitive to
the statistical model used; the hump-backed re-
lationship was also evident when we used a neg-
ative binomial generalized linear mixed model
(GLMM) that accommodated the hierarchical
structure of our sampling design (grids nested
within sites; Table 1 and fig. S1).
At a sampling grain of 1 m2, 19 of 28 site level

analyses (68%) yielded significant concave-down
relationships (table S2 and Fig. 2A). This con-
trasts markedly with the results of Adler et al. (1),
who found only 1 of their 48 within-site analyses
to be significantly concave-down. We also found
the form of the productivity-diversity relation-
ship to be robust to sampling grain: by using
grains of 1 m2 up to 64 m2, each time main-
taining a global extent, we consistently found a
significant concave-down relationship, although
the proportion of variation explained tended to
decrease with increasing grain (fig. S2).
The HBM predicts a boundary condition or

upper limit to diversity that, in any given site,

may not be realized for a variety of reasons (18).
Consistent with this view, our global-extent as-
sociation is characterized by a significant concave-
downquantile regression (95th percentile) (Table
1), below which considerable scatter exists (Fig.
2A). This pattern was also insensitive to the
statistical method used; a hierarchical Bayesian
analysis that accommodated the nested sampling
design and that enabled both the mean and the
variance of species richness to be modeled more
accurately against (log-transformed) biomass also
revealed a significant 95th percentile quantile
regression (fig. S3). Likewise, we found a signifi-
cant, concave-downquantile regression (95th per-
centile) between the maximum (quadrat-scale)
richness foundwithin a grid and the total biomass
of the same quadrat (Table 1 and fig. S4). Each of
these approaches to characterizing boundary con-
ditions suggests the existence of a “forbidden
space,”wherein high productivity precludes high
local diversity. Furthermore, they suggest that
extremely low-productivity sites rarely accommo-
date high diversity.
Why do our data show a hump-backed rela-

tionship, whereas those of Adler et al. (1) and
related studies (4, 6), do not? One possibility is
that data limitations can thwart detection of the
HBM (18). For example, the data used by Adler
et al. differed from ours in the following poten-
tially important ways: (i) They exhibited a maxi-
mumlivebiomassofonly 1535g−2 (ourswas3374g−2),
(ii) litter was not included within the calculation
of biomass, and (iii) sample sizewas limited to 30
quadrats per site (ours ranged from 128 to 894
quadrats per site; table S1). We conducted a form

of sensitivity analysis in which we reran our sta-
tistical analyses using random subsets of our
data that were constrained to exhibit similar
properties to those of the Adler et al. data set.
Specifically, after limiting the overall data set to
less than 1535 g−2 and excluding litter, we ran-
domly selected 30 quadrats per site 500 times,
each time conducting the within-site regression
analyses (N = 30 for each of the 28 site-level
GLMs conducted per subsampling iteration). For
each iteration, we also calculated the average
range of biomass spanned by the 28 site-level
relationships. Across the 500 iterations (one
example set of outcomes is shown in Fig. 2B),
the average proportion of significant concave-
down, within-site regressions was 0.31 ± 0.003
(SEM), significantly less than our observed pro-
portion of 0.68 (fig. S5). Moreover, when signif-
icant concave-down relationships were detected,
they tended to span a broader range of biomass
than the remaining forms (including nonsignifi-
cant relationships). Specifically, in 458 of the 500
iterations (92%), the mean biomass range of the
concave-down regressions was larger than the
mean of the remaining forms’ biomass ranges
(binomial test: P < 2.2 × 10−16). Last, the 48
within-site analyses of Adler et al. spanned, on
average, a live biomass range of 428.7 g−2 ± 38.36
(range of 89 to 1217 g−2). This is (i) less than half
of the average range encompassed by our 28 site-
level analyses shown in Fig. 2A (mean= 1067.5 g−2 ±
140.63; rangeof 286 to 3256g−2) and (ii) almost 50%
narrower than the smallest average biomass range
encompassed by our 500 random subset analyses
(627.4 g−2) (fig. S6). Taken together, these findings
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Fig. 1. Site locations. Locations of the geographic centroids of the 30 study sites, which include 151 sampling grids. Some points overlap and are therefore
indistinguishable. Additional site details are provided in table S1. Map is displayed using the Robinson projection.
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strongly suggest that we were able to detect
more concave-down relationships because of the
greater sample sizes and biomass ranges in our
analysis.
It has been suggested (2) that some previous

studies, including Adler et al. (1), failed to support
the HBM because they excluded litter. Although
we do find a significant concave-down relation-
ship at the global extent using only live biomass
(Table 1), a comparison of models using biomass
versus biomass and litter (both N = 9,631) shows

total biomass to provide a far better fit [residual
deviance = 10,105 (live) versus 10,037 (total); Vuong
z-statistic for comparing non-nestedmodels: –13.4;
P < 0.001]. It has also been suggested that previ-
ous surveys failed to adequately represent high-
productivity communities. Indeed, our high-biomass
quadrats (1011 samples were over 1000 g−2, ~10%
of the 9631 samples; maximum of 5711 g−2) con-
tributed considerably to the right-hand part of
the fitted humped-back regression. This could be
a reason why the data set of Adler et al. (1) (in

which only 0.5% of samples were over 1000 g−2

with a maximum of 1534 g−2) failed to support
the HBM. Our results therefore show that a test
of the HBM in herbaceous plant communities
yields the expected pattern when it is robust and
comprehensive, spans a wide range of biomass
production (from 1 to at least 3000 dry g−2 year−1),
and provides sufficient replication of quadrats
along the productivity gradient.
Competitive exclusion has been cited as the

primary factor driving low species numbers at
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Table 1. Regression results. Results of regression analyses of the relationship between productivity and species richness, measured at a global extent and a
sampling grain of 1-m2 quadrat. Total biomass = live biomass + litter biomass. All linear and quadratic term coefficients were highly significant (P < 0.001).

Productivity measure Type of regression Sample size Test of model fit Intercept
estimate T SEM

Linear term
coefficient T SEM

Quadratic term
coefficient T SEM

Total biomass negative binomial
GLM (log-link function)

9631
quadrats

likelihood ratio
stat. = 1602.2

–2.52 ± 0.235 4.69 ± 0.186 –1.04 ± 0.037
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Total biomass negative binomial
GLMM (log-link function)

random effects:
grid nested in site

9631
quadrats
151 grids
28 sites

likelihood ratio
stat. = 114.0

0.91 ± 0.191 1.33 ± 0.133 –0.29 ± 0.028

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Total biomass quantile
(95th percentile)

9631 quadrats pseudo-F
statistic = 179.1

–12.9 ± 7.159 45.6 ± 5.833 –11.3 ± 1.173
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Live biomass negative binomial GLM
(log-link function)

9644 quadrats likelihood ratio
stat. = 950.3

–2.03 ± 0.212 4.27 ± 0.178 –0.96 ± 0.037
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. .. . ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Fig. 2. Biomass production as a function of species richness. (A)
Biomass production-species richness relationships for 28 study sites.
Solid black line indicates significant quantile regression (95th percentile)
of overall relationship (quadratic coefficient P < 0.001; N = 9631 quadrats).
Dashed black line, significant negative binomial GLM (quadratic coefficient
P < 0.001; N = 9631). Colored lines indicate significant GLM regressions
(Poisson or quasi-Poisson), with N ranging from 128 to 894 quadrats.

(Inset) The frequencies of each form of relationship observed across study
regions. NS, not significant. (B) Same as (A) but the results are derived
from the analysis of an example, random subsample of the complete data
set that satisfies the following criteria: litter biomass excluded, quadrats with
biomass >1534 g−2 excluded, and including 30 (randomly selected) quadrats
per site (total N = 840). These criteria match the characteristics of the data
set used by Adler et al. (1).
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high plant biomass (7, 8, 25). However, in the
case of nitrogen addition the negative relation-
ship between productivity and species richness
has been shown to diminish over time [(26), but
see (27, 28)]. It may be that low species richness
in high-productivity conditions arises in part be-
cause most such habitats are anthropogenic, and
there are few species in the local pool adapted to
these conditions (11, 12). If so, it is possible that
species will eventually immigrate from distant
pools, so that the right-hand part of the hump
will then flatten out.
We have shown a global-scale concave-down

unimodal relationship between biomass produc-
tion and richness in herbaceous grassland com-
munities. However, the original HBM (7) is vaguely
articulated by the standards of modern ecological
theory, and it is clear that more work is needed
to determine the underlying causal mechanisms
that drive the unimodal pattern (1, 6, 17, 18). We
recognize that, in our study and many others,
productivity accounts for a fairly low proportion
of the overall variation in richness and thatmany
other drivers of species richness exist (28–30).
Accordingly, we echo the call of Adler et al. (1) for
additional efforts to understand the multivariate
drivers of species richness.
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ICE SHEETS

Reverse glacier motion during
iceberg calving and the cause of
glacial earthquakes
T. Murray,1* M. Nettles,2 N. Selmes,1 L. M. Cathles,3 J. C. Burton,4 T. D. James,1

S. Edwards,5 I. Martin,5 T. O’Farrell,6 R. Aspey,6 I. Rutt,1 T. Baugé7

Nearlyhalf ofGreenland’smass lossoccurs through icebergcalving, but thephysicalmechanisms
operating during calving are poorly known and in situ observations are sparse.We show that
calving at Greenland’s Helheim Glacier causes a minutes-long reversal of the glacier’s horizontal
flow and a downward deflection of its terminus.The reverse motion results from the horizontal
force caused by iceberg capsize and acceleration away from the glacier front.The downward
motion results from a hydrodynamic pressure drop behind the capsizing berg, which also causes
an upward force on the solid Earth.These forces are the source of glacial earthquakes, globally
detectable seismic events whose proper interpretation will allow remote sensing of calving
processes occurring at increasing numbers of outlet glaciers in Greenland and Antarctica.

O
ne-third to one-half of Greenland’s total
mass loss occurs through iceberg calving
at the margins of tidewater-terminating
glaciers (1, 2). Recent rapid changes in glacier
dynamics are associated with increased

calving rates (3–5) and increased rates of glacial
earthquakes (6). At large glacierswithnear-grounded
termini, calving typically occurs when buoyancy
forces cause icebergs that are the full thickness of
the glacier to capsize against the calving front (6–9).
This type of calving is associated with glacial
earthquakes (6, 7, 10), long-period seismic emis-
sions of magnitude ~5 that are observed globally
(11). These earthquakes have expanded north-
ward and increased sevenfold in number during

the past two decades (6, 12, 13), tracking changes
in glacier dynamics, the retreat of glacier fronts,
and increased mass loss (6, 14). Buoyancy-driven
calving represents an increasingly important source
ofdynamicmass loss (6–8) as glacier fronts through-
out Greenland have retreated to positions near
their grounding lines (15). However, because of
the difficulty of instrumenting the immediate near-
terminus region of these highly active glaciers, few
direct observations of the calving process are avail-
able, limiting development of the deterministic
calving models required for improved understand-
ing of controls on dynamic ice-mass loss. Detailed
knowledge of the glacial earthquake source would
allow quantification of calving processes for a large
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aab3916 Supplementary Material  

 

Materials and Methods 

 

Site selection: The Herbaceous Diversity Network (HerbDivNet) is a network of researchers 

working at herbaceous grassland sites in 19 countries located on 6 continents performing 

coordinated distributed experiments and observations (20). The full sampling design is detailed 

here and in Fraser et al. (18). All HerbDivNet sites are located in areas dominated by herbaceous 

vegetation representing the regional species composition. 

 

Sampling protocol: The design is an 8 x 8 meter grid containing 64 1 m2 plots.  Within all 30 

sites included in the current analysis (Fig. 1) we collected biomass and species richness data 

from at least two and up to fourteen 8 x 8 m grids. All grids were marked and GPS coordinates 

were recorded for future use. Our study focused on herbaceous grassland community types. For 

each 1 m2 plot, all species were identified and the number counted. In the rare instances where 

species were unidentifiable, morphotypes were assigned. Total above-ground biomass (including 

plant litter) at peak biomass was harvested, dried and weighed by plot. Live biomass and litter 

were separated prior to drying and weighing. We did not separate biomass by species. Sampling 

was restricted to herbaceous plant communities; however, the occasional small woody plant was 

found within a sample area, which was noted but not included in the analyses. Cryptogams were 

not included in either measures of species richness, or biomass.   
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The ideal level of participation for each investigator was to sample at least six grids of 64 

quadrats, two each at three relatively different levels of productivity from low (~1-300 g m-2) to 

medium (~300-800 g m-2) to high (>800 g m-2). However, logistical constraints meant this was 

not possible at all sites and some sites had as few as two grids, taken at the low and high ends of 

the gradient. Most sites had a history of grazing or fire and were currently under some form of 

management. Therefore, sampling was performed at least three months after the last grazing or 

burning event.  

 

Supplementary Text 1 

Assessing the richness-productivity relationship at the global extent: 

 

In the main text we present the results of generalized linear model (GLM) analysis, in which 

species richness was modeled as a function of total biomass (log10 transformed) using a negative 

binomial GLM.  We complement this analysis with a generalized linear mixed model (GLMM) 

analysis, which accommodates the spatially nested structure of our sampling design (grids nested 

within sites). Regression diagnostics revealed a negative binomial distribution to be appropriate 

again (as in the main GLM analyses), with grids nested within sites, both coded as random 

effects, and log10-transformed total biomass as the fixed effect.  This was achieved using the 

“glmmADMB” package in R (31).  The predicted association from this regression is shown in 

Figure S1 below. 
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Assessing the diversity-productivity relationship at the spatial extent of sites: 

 

A total of 28 sites were analyzed, keeping sampling grain fixed (1 m2) with the number of 

sample quadrats ranging from 128 to 894 (Table S1). For these regressions we followed the 

methods of Adler et al. (1) as closely as possible.  Specifically: 

(i) Scatterplots between species richness and productivity were inspected to flag potential 

violations of regression assumptions. 

(ii) Because species richness data comprises counts, we first modeled richness using a Poisson 

regression in a GLM framework. We used the “AER” package (32) in R to test whether the 

dispersion parameter differed significantly from the assumed value of 1 (either under- or over-

dispersed). If it was, we used a quasi-GLM model to adjust the standard errors (33).   

(iii) For each regression, we fit species richness as both a linear and quadratic function of 

biomass, and inspected regression diagnostics including leverage values and residual plots.   

(iv) If the inclusion of the quadratic term did not result in a significant reduction in residual 

deviance (at D = 0.10) then it was removed from the model. If the remaining single-term model 

was no better than the null (based on deviance), then the model was designated “not significant” 

(NS). These results were identical when we judged significance based on the coefficient estimate 

(not shown). 

The results of these analyses are presented in Figure 2A, and in Table S2. 
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Assessing the richness-productivity relationship across different sampling grains: 

 

Using the entire global dataset as the extent of analysis, we evaluated how the richness-

productivity association varied across increasing sampling grain, from 1 m2 to 64 m2. For each of 

the 8 grain sizes, we equated richness with the number of unique species encountered in the 

given area, and productivity with the total biomass (live biomass+litter) across the area. Thus, in 

each regression analysis, each sampling grid provided one data point. Missing biomass values for 

31 individual quadrats reduced the number of grids for some analyses. We used normal least-

squares regression, as a Gaussian error distribution was found to be suitable. Examination of 

regression diagnostics also led us to eliminate 2 grids with high leverage (with low richness and 

extremely high biomass), though results were qualitatively identical otherwise. Thus, final 

sample sizes ranged between N = 133 and 149. For the first suite of 8 regressions, we used 

quadrats “grown” in size from one consistent corner of the grid. We then constructed three new 

regression models, each time using data from a different starting grid corner and thus orientation. 

Parameter estimates and coefficients of determination were averaged across the 4 orientations for 

each grain size. We used alpha = 0.05 throughout. The results of this analysis are presented in 

Figure S2, below. 

 

Hierarchical Bayesian analyses of the boundary richness-productivity relationship:  

 

We used a hierarchical Bayesian modeling approach, in which both the mean and variance of 

species richness were modeled nonlinearly against (log-transformed) biomass, and that included 
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random effects to account for the nested spatial structure of the dataset. Posterior distributions 

for upper quantiles (envelope) of richness were calculated from normal distributions of estimated 

means and variances across the biomass gradient.  

Because we expected nonlinear relationships for both the mean and variance of richness 

against biomass, we included quadratic expressions for the mean and variance of richness in the 

following way: 

Species richnessi ~ N(µi�ı2
i) 

µi = ȕ0 + ȕ1*Biomassi + ȕ2*Biomassi
2 + N���ı2

study) + N���ı2
grid) 

ı i = Į0 + Į1*Biomassi + Į2*Biomassi
2 

where the richness of quadrat i LV�GLVWULEXWHG�QRUPDOO\�ZLWK�PHDQ���DQG�YDULDQFH�ı2, and mean 

richness includes random intercept effects of study site and grid-within-study. To generate 

posteriors for an upper quantile, we used fitted mean and variance estimates to calculate the 

value of the 95th quantile for each MCMC iteration: 

 q95i = qnorm(0.95,mean=µi�YDULDQFH ı2
i) 

Models were fit via Markov chain Monte Carlo optimization as implemented in JAGS 

(34) run from R 3.03 (31) in the R2jags package (35). We ran three parallel MCMC chains for 

10,000 iterations after a 500-iteration burn-in, and evaluated model convergence with the 

Gelman & Rubin statistic (36) such that chain results were indistinguishable. We used flat 

normal priors for ȕ�and Į coefficients, with the exception of uniform positive priors for Į1 to 

ensure positive variance estimates.  
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Fitted 95th quantiles and associated 95% credible intervals for biomass including litter are 

shown below (Fig. S3). Note that we did not attempt to include richness observations at 

extremely low (< 50 g; 0.7% of the data) or high biomass values (> 1500 g; 3% of the data, half 

of which were richness values of 1) due to low sample sizes that precluded envelope 

calculations. 

 

Assessing the boundary richness-productivity relationship using maximum grid richness as 

the response, and employing quantile regression: 

 

Using the global dataset as the extent of analysis, we quantified the upper boundary of the 

richness-productivity relationship using maximum richness observed in a grid (among the 1m2 

quadrats) as the response variable, and the total biomass associated with the quadrat of maximum 

richness as the predictor variable. We employed quantile regression, using the 95th percentile.  

For comparison, we include the results of a least-squares regression. The results of this analysis 

are presented below in Figure S4.  

 

Examining the sensitivity of the richness-productivity relationship to biomass range, measures 

of productivity, and sample size: 

 

The goal of this suite of analyses was to mimic the properties of the dataset used by Adler et al. 

(1), and to re-analyze this subset of data using the same methods employed to produce Figure 

2A. The details of the subsampling procedure are described in the main document, and the 
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regression methods we used are identical to those described in section “C” above. For the GLM 

analysis conducted on each of the 500 random subsets of data (see main document), we 

calculated the proportion of the within-site regressions (out of 28 total) falling into each of the 

five categories of form. In Figure S5 below we show how these proportions compare to our 

observed proportions.  

Lastly, for each iteration, we calculated the range of biomass encompassed by each site 

(based on its random sample of 30 quadrats). We then calculated the average of these biomass 

ranges across the 28 site-level analyses, for each iteration. Figure S6 below shows a histogram of 

the resulting 500 average biomass ranges, along with the average biomass range encompassed by 

the 48 site-level analyses of Adler et al. (data kindly provided by Jim Grace, and is housed at the 

Nutrient Network website: http://nutnet.umn.edu/data). 

 

Supplementary Figures  
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Supplementary Figure S1:  The unimodal productivity-richness relationship.  Superimposed 

over the individual quadrat values (light grey points; N = 9631) are the regression lines from the 

negative binomial GLM (black line; see Table 1) and the negative binomial GLMM in red 

(population level prediction), in which grids (N = 151) are nested within sites (N = 28), both as 

random effects (Log-likelihood = -23097.9; quadratic term coefficient = -0.29, Z-value = -10.4, 

P < 0.001).   
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Supplementary Figure S2: Biomass-species richness relationship as it relates to scale. 

Varying the sampling grain (maintaining global extent) does not change the general form of the 

relationship between species richness and biomass, though the amount of variation accounted for 

by the model (see adjusted R2 values) generally decreases with increasing grain. At every scale, 

the quadratic term was significant (P < 0.05). Dashed lines indicate the least-squares regression.   

 

 

 

Supplementary Figure S3: Bayesian model results. Posteriors of the 95th quantile of species 

richness along a biomass gradient (mean and 95% credible intervals) from the Bayesian models. 
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Supplementary Figure S4: Estimating the upper boundary of richness in relation to 

productivity.  Individual points show the maximum richness observed among 1 m2 quadrats 

within a grid (N = 151 grids) paired with its associated total biomass. The solid black line 

represents the 95th percentile quantile regression that determines the boundary condition 

(quadratic term coefficient = -37.77, SE = 13.36, P = 0.005; pseudo R2 = 0.14). The grey line 

represents the least-squares regression that includes a highly significant quadratic term (quadratic 

term coefficient = -0.94, SE = 0.14, P < 0.001; adjusted R2 = 0.33). Excluding the two points 

with zero richness (bottom right) did not affect the significance of the quadratic term in either 

regression, though for the least-squares regression the adjusted R2 was reduced to 0.16. 
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Supplementary Figure S5:  Proportion of the 28 GLM regressions within study regions that 

correspond to the different forms.  Each box includes N = 500 proportions, derived from the 

analyses of the 500 random subsets of data. The red lines correspond to our observed proportions 

(see inset of Figure 2A in main document). Our observed proportions differed significantly from 

those expected, based on the subsampled data (F2 = 11.54; P =0.009).  None of the 500 analyses 

yielded proportions of “concave down” relationships as large as our observed proportion. 
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Supplementary Figure S6: Histogram of the average biomass range observed within each 

of the 500 iterations of site-level analyses.  For comparison, the red line shows the average 

biomass range (428.7 gm-2) encompassed by the 48 site-level analyses of Adler et al. (1). 

 

Supplementary Tables
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 Supplementary Table S1: Herbaceous Diversity Network sites. Grassland type is separated into 5 categories (Temp = temperate; 

Wet = temperate wet meadow; Med = Mediterranean; Trop = tropical and subtropical; and Alpine), with numbers in parentheses 

indicating number of grids within each grassland type. A grid represents one 8 x 8 m2 sampling area.  Coordinates are provided in 

decimal degrees, and use the WGS84 datum. 

Region Country 
Grassland 

type 

Number 
of grids 

Centroid 
longitude  

Centroid 
latitude  

Mean total 
biomass 
(gm-2) 

SD total 
biomass 
(gm-2) 

Mean species 
richness (m-2) 

SD species 
richness (m-2) 

1 Hungary Temp 4 20.1885 46.6159 358.8 267.15 11.7 6.39 

2 Germany Temp 6 11.5636 49.9169 412.7 305.22 13.9 8.92 

3 Mongolia 
Temp (2) / 

Wet (4) 
6 105.0168 48.8515 317.8 111.90 14.7 4.51 

4 Canada Temp 6 -111.9590 50.8912 473.7 317.65 7.6 1.94 

5 Canada Temp 6 -111.5615 53.0848 293.9 159.08 13.2 4.33 

6 USA Med 2 -117.1685 32.8839 314.2 121.90 7.7 1.62 

7 Romania Alpine 4 25.9518 46.4089 495.1 87.18 31.8 6.94 

8 Argentina Temp 4 -64.4257 -31.1287 959.5 779.13 20.3 7.49 
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Region Country 
Grassland 

type 

Number 
of grids 

Centroid 
longitude  

Centroid 
latitude  

Mean total 
biomass 
(gm-2) 

SD total 
biomass 
(gm-2) 

Mean species 
richness (m-2) 

SD species 
richness (m-2) 

9 Brazil Trop 4 -47.8668 -17.9540 781.9 318.12 8.8 5.95 

10 USA Temp 4 -95.1912 39.0575 515.6 268.09 12.2 6.79 

11 Canada 
Temp (12) 

/ Wet (2) 
14 -120.5730 50.9167 489.4 459.69 7.8 2.68 

12 Canada Temp 2 -81.3175 43.1930 390.8 84.79 5.4 1.44 

13 Hungary Temp 4 17.7028 47.1466 494 82.09 22.4 3.90 

14 Austria Alpine 6 10.7048 47.1456 324.9 112.83 25.0 7.35 

15 Iran 
Med (6) / 

Alpine (5) 
11 50.9557 36.8583 431.4 291.03 12.0 4.32 

16 China Alpine 4 102.7787 37.2012 308.2 179.09 15.3 3.34 

17 UK Temp 4 -1.6837 55.2172 568.4 355.13 10.9 2.05 

18 USA 
Temp (4) / 

Wet (2) 
6 -81.6034 41.3593 1592.7 1173.77 2.8 2.58 
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Region Country 
Grassland 

type 

Number 
of grids 

Centroid 
longitude  

Centroid 
latitude  

Mean total 
biomass 
(gm-2) 

SD total 
biomass 
(gm-2) 

Mean species 
richness (m-2) 

SD species 
richness (m-2) 

19 Iran Temp 6 59.0169 36.8936 300.7 184.50 7.0 1.94 

20 Brazil Trop 2 -51.6823 -30.1011 215.8 53.01 27.6 5.87 

21 Canada Alpine 4 -119.4263 50.0118 280.7 161.03 14.0 3.30 

22 Kenya Trop 6 36.8911 0.3882 812.8 451.06 6.0 3.61 

23* Israel Med 6 35.5334 32.5213 288.2 169.03 16.7 8.32 

24 Japan 
Temp (4) / 

Wet (2) 
6 140.9299 41.0162 545.5 282.98 8.7 4.02 

25* Canada Temp 2 -110.4423 49.0361 105.3 37.15 8.1 2.47 

26* Mongolia Temp 4 106.9060 49.0153 282.3 94.80 16.1 3.74 

27 South Africa Temp 6 29.4935 -25.6213 533.4 327.50 8.0 3.24 

28 Italy Alpine 6 13.0179 42.9542 365.3 120.93 19.9 4.92 

29 New Zealand Temp 2 170.6227 -45.6794 1277 189.75 8.7 1.92 

30 Estonia Temp 10 24.7988 58.4634 479 344.14 19.1 8.32 
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* plant litter was not collected at these sites, so these were excluded from total biomass analyses, but included in live biomass 

analyses.   
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Supplementary Table S2: Regression coefficients from the GLM analyses (Poisson or 

quasi-Poisson approach) of the relationship between total biomass and species richness. 

Regressions were conducted at the study site extent (28 sites, site numbers corresponding to 

those in Table S1).  All coefficients are significant at P < 0.001, except as follows: ** P < 0.01; 

* P < 0.05.  “NA” = not available. Forms are “CD” concave down; “NEG” negative linear; 

“POS” positive linear, and “NS” not significant. 

  Linear term Quadratic term   

Site N Coefficient SE Coefficient SE 
% Deviance 
explained 

Form 

1 256 6.03 1.258 -0.98 0.259 71.6 CD 

2 373 3.03 0.304 -0.95 0.072 68.7 CD 

3 382 17.25 2.538 -3.77 0.516 43.6 CD 

4 384 -0.51 0.029 NA NA 45.5 NEG 

5 383 10.66 1.434 -2.28 0.3 16 CD 

6 128 NA NA NA NA 1.6 NS 

7 253 33.07 8.824 -6.04 1.648 12.1 CD 

8 256 1.8* 0.79 -0.49 0.138 76 CD 

9 256 24.24 6.409 -3.88 1.106 23.3 CD 

10 256 6.65** 2.422 -1.64 0.466 46.2 CD 

11 894 3.78 0.416 -0.77 0.082 11.1 CD 

12 128 NA NA NA NA 2 NS 

13 256 NA NA NA NA 0.9 NS 

14 382 0.2** 0.096 NA NA 1.1 POS 

15 704 2.45 0.549 -0.43 0.11 9.7 CD 

16 256 3.79 0.736 -0.85 0.156 18.7 CD 

17 256 1.18 0.56 -0.29** 0.107 37.5 CD 

18 384 -2.39 0.128 NA NA 54.2 NEG 

19 380 -0.27 0.038 NA NA 11.4 NEG 

20 128 4.2 2.125 -1.07* 0.475 13.2 CD 

21 256 5.33 1.337 -1.1 0.277 6.1 CD 

22 382 3.89** 1.376 -0.72** 0.252 3.8 CD 

23 384 5.94 0.76 -1.49 0.173 34.9 CD 
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24 378 12.45 1.667 -2.29 0.318 22.7 CD 

25 384 6.04 0.852 -1.36 0.171 46.9 CD 

26 384 -11.67 1.993 2.39 0.391 15.2 CU 

27 128 NA NA NA NA 1.6 NS 

28 640 9.45 1.023 -2.15 0.193 76.2 CD 
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