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Highlights
Ecologists use the 'landscape of fear'
framework to describe spatial variation
in perceived predation risk and prey
response, despite mixed empirical
evidence.

However, risk and response are dynamic
in time aswell as space; we explorewhat
drives cycles of risk and how these
cycles structure antipredator decision-
making in time.

Temporal and spatial heterogeneities in
risk interact to create spatiotemporal
The landscape of fear (LOF) concept posits that prey navigate spatial heteroge-
neity in perceived predation risk, balancing riskmitigation against other activities
necessary for survival and reproduction. These proactive behavioral responses
to risk can affect individual fitness, population dynamics, species interactions,
and coexistence. Yet, antipredator responses in free-ranging prey often contra-
dict expectations, raising questions about the generality and scalability of the
LOF framework and suggesting that a purely spatial, static LOF conceptualiza-
tion may be inadequate. Here, we outline a ‘dynamic’ LOF framework that explic-
itly incorporates time to account for predictable spatiotemporal variation in risk–
resource trade-offs. This integrated approach suggests novel predictions about
predator effects on prey behaviors to refine understanding of the role predators
play in ecological communities.
‘dynamic landscapes of fear', where
spatial hotspots of risk vary across tem-
poral cycles.

Predictions from a dynamic fear land-
scape differ from those of a static, spatial
landscape of fear, with consequences
for forecasting prey behavior, non-
consumptive effects, and behaviorally
mediated trophic cascades.

This framework helps resolve discrepan-
cies between conventional fear theory
and empirical data, enabling a more pre-
cise understanding of how fear struc-
tures ecological communities.
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Role of predation risk in ecological systems
With growing recognition of the pivotal yet complex role of predation risk (see Glossary) in
ecological systems [1], the landscape of fear (LOF) is increasingly invoked to describe spatial
variation in prey perception of predation risk [1–3]. This metaphor encapsulates the idea that
prey perception of encounter, attack, and/or kill probabilities varies across space, generated
by predictable interactions among the physical environment, predator density and hunting
mode, and prey vulnerability [4–6]. Prey are predicted to proactively mitigate these threats by
avoiding dangerous areas and/or by modulating other behaviors (e.g., vigilance, foraging,
activity levels) across the landscape according to levels of perceived risk. Such behavioral re-
sponses often bear costs, such as reduced foraging time or increased stress [1,7], which
can scale-up to exert non-consumptive effects on prey survival, reproduction, and popula-
tion structure [8,9].

The understanding that animals proactively alter antipredator behaviors across gradients of per-
ceived risk was advanced by models and controlled experiments involving small consumers
(e.g., fish, insects, rodents), typically at small spatial (e.g., mesocosms) and temporal
(e.g., days, weeks) scales (see [3]). However, many question the extent to which spatial patterns
of risk predict the behavioral and ecological dynamics of large, long-lived, and wide-ranging an-
imals, which interact over expansive and complex natural landscapes and often exhibit cultural
evolution and learning [10–12]. Strong behavioral responses to risky places and resultant non-
consumptive effects have been documented in some such systems but not others; even within
a given system, studies have yielded divergent results that seem difficult to reconcile with the no-
tion of pervasive and predictable spatial structure in predation risk and prey response (e.g., North
American wolves Canis lupus and cervids [11,13,14]; African wild dogs Lycaon pictus and ante-
lopes [15,16]). These discrepancies suggest that there are complex relationships between spatial
patterns of predation risk and prey responses.
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Time as a crucial dimension in landscapes of fear
We argue that time is a critical dimension that remains poorly integrated in research on the LOF. It
has long been recognized that risk (real and perceived) varies in time (e.g., [17–20]) as well as in
space. Nonetheless, spatial patterns of perceived predation risk are typically represented as a
temporally static or time-averaged phenomenon [2,3,7] in which prey responses to perceived
risk are governed by the interaction of landscape features that vary slowly over time (such as hab-
itat architecture [16,21,22]) and species’ intrinsic traits (such as predator hunting mode [23,24]
and prey antipredator strategies [25]). Purely spatial models of risk are appealing insofar as the
relative constancy of landscape features may allow prey to anticipate localized threats and proac-
tively avoid being attacked [2,3]. However, these static spatial models of risk implicitly assume
that risk is constant [26] or that averaged long-term patterns of risk at a given site [12] adequately
predict short-term antipredator behaviors.

Yet both risk and response can also be predictably structured in time [17,18,27]. The ways in
which temporal pulses [19] and spatial patterns [18,27] of risk influence antipredator decision-
making have independently received much theoretical and empirical investigation. However,
fewer studies have explicitly integrated these threads by situating predictable cycles of risk within
a spatial context and exploring how periodic temporal shifts in risk may influence spatial decision-
making. Cyclical temporal dynamics are ubiquitous across ecosystems (Table 1), creating
schedules of fear (sensu [28]) that prey can anticipate and respond to. These schedules arise
from variation in organismal and environmental factors that predictably constrain predator activity
and prey vulnerability (Figure 1). Prey may perceive patterns of risk that vary across time and
space simultaneously and the ability of mobile animals to move selectively in and modulate their
activities across heterogeneous space-time may allow them to proactively minimize risk and re-
duce foraging costs and stress (Figure 2 but see Box 1 and Outstanding questions).

A growing number of empirical studies have documented fine-scale spatiotemporal variation in
prey behavior when spatial patterns of risk contrast between day and night [28–30] or across sea-
sons [31,32] (Table 1 and Figure 2). For example, in South America, puma (Puma concolor) are
consistently active in vegetated and rugged areas from dusk until dawn; their main prey, vicuña
(Vicugna vicugna), avoid or reduce their overall activity in these areas at night but select for veg-
etated locations during the day [33]. In Shark Bay, Australia, seasonally migrating tiger sharks
(Galeocerdo cuvier) frequent shallow banks where fish biomass is high but are largely absent
from deeper channels. During months when sharks are present, bottlenose dolphins (Tursiops
aduncus) avoid resource-rich shallows for the impoverished deeps; when sharks are absent, dol-
phins distribute themselves in proportion to food availability [34]. These and other studies
(Table 1) demonstrate the need to integrate space and time in theoretical and empirical studies
of prey behavioral responses to predation risk in complex natural environments.

Dynamic LOF framework
We present a framework for understanding dynamic landscapes of fear (dynamic LOFs) [11,35]
to guide future research on how prey perceive and respond to predation risk across both space and
time simultaneously (Figures 1 and 3). The dynamic LOF integrates temporal variation and spatial het-
erogeneity to derive predictions about prey behavioral decision-making (e.g., distribution, activity
levels, vigilance, association patterns [11,33,36]) and its potential consequences for individual fitness
[32], species interactions and coexistence [37], and broader ecological processes [38].

Explicitly considering the spatiotemporal structure and scale of predation risk, as well as spatio-
temporal constraints on prey behavior, can inform debates about the ecological role of risk across
systems.Wemight expect spatial variation in predation risk perception to impose strong costs on
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Glossary
Consumptive effects: also known as
‘lethal effects’; effects that predators
exert on prey populations by killing
individuals (i.e., directly reducing prey
density).
Dynamic landscapes of fear
(dynamic LOFs): variation in perceived
predation risk across space and time
simultaneously.
Landscape of fear (LOF): spatial
variation in perceived predation risk.
Non-consumptive effects: also
known as ‘risk effects’ or ‘non-lethal
effects’; effects of predators on prey
individuals and/or populations arising
from behavioral and/or other
phenotypic trait changes that entail
fitness costs (e.g., reduced survival or
reproduction).
Predation risk: chronic/long-term/
‘risky places’; the underlying risk of injury
or mortality associated with a particular
location generated by predictably high
levels of predator activity and/or prey
vulnerability (e.g., high predator density,
areas where predators are predictably
present and/or hunting success is
consistently high). Acute/short-term/
‘risky times’; an actual and/or
probable adverse encounter with a
predator (e.g., predator presence,
predators active within a particular
distance of prey); predators may or may
not be predictable in space and/or time.
Schedule of fear: cyclical temporal
variation in perceived predation risk.
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prey if antipredator behaviors interfere with foraging opportunities, with possible cascading ef-
fects of predator avoidance on other trophic levels [2,3]. However, temporal cycles of predator
activity may enable prey to modulate their spatial activity in time, for instance, by utilizing temporal
refuges to access otherwise dangerous areas [33,35,36]. If so, then strong antipredator
responses might not trigger non-consumptive effects [32,37] or behaviorally mediated trophic
cascades [38] (Figure 2 and Table 1). For example, white-tailed deer (Odocoileus virginianus) in
Minnesota, USA avoid foraging in areas scent-marked by wolves only during times when wolves
actively hunt (dawn/dusk) [38]. By visiting these areas during safer times of the day, deer maintain
access to the entire landscape, curtailing behaviorally mediated trophic cascades on vegetation.
If responses to the spatial patterning of risk alone had been examined, then risk-sensitive foraging
would not have been detected, possibly leading to the false conclusion that prey did not perceive
or respond to risky places. In this way, divorcing space from time can mischaracterize risk effects
[11,13,14].

By understanding predation risk as variable in both space and time, we can better predict the ef-
fects of predators on prey behavior, non-consumptive effects, and trophic cascades across spe-
cies and systems, from aquatic microinvertebrates to terrestrial megaherbivores (Table 1). Next,
we consider two broad questions: First, why and under what circumstances should actual risk,
perceived risk, and prey response vary spatiotemporally, and at what scale(s)? Second, what be-
havioral responses should emerge in a dynamic LOF, and how do these predictions differ from
those predicted by a model that ignores time?

When do risk and response vary across space and time?
Predators with particular hunting modes (e.g., ambush hunting) and behaviors (e.g., territoriality)
should generate more predictable spatial patterns of risk and therefore be easier for prey to pro-
actively avoid in space [23,39]. Similarly, predators should be more predictable, and hence avoid-
able, in times when the timing of their foraging/hunting activities is constrained by physiological,
morphological, and/or ecological factors [40] (Figure 1). Prey likewise face spatial and temporal
constraints that affect the risk–resource trade-offs that dictate their ability to respond to risk. Spa-
tial heterogeneities in risk and response are reviewed thoroughly elsewhere [2,3]; next, we briefly
outline how predator activity/hunting success and the ability of prey to respond to perceived pre-
dation risk can vary across a finite number of predictable temporal cycles that arise from Earth’s
rotation and Earth’s and Moon’s orbits.

Tidal cycles
Hourly changes in currents and tidal forces (turbidity, salinity, velocity, depth) impose functional and
mechanical constraints, modulating sensory capabilities, locomotor performance, and thermoreg-
ulation [41,42], and predictably altering local predator and prey abundance, hunting success, and
prey vulnerability [43]. For example, tidal oscillations in estuarine and intertidal environments can
periodically trap predators and prey together (e.g., in tide pools) and regulate access to resources
or spawning opportunities. Marine currents can interact with spatial heterogeneity (e.g., in reefs) to
create hotspots of risk strong enough to generate behaviorally mediated trophic cascades [44].

Diel cycles
Earth’s rotation affects light, temperature, and other factors on hourly timescales. Predator
hunting mode interacts with photoperiods (e.g., ambush predators hunt better in low light
[33]) or temperature (e.g., pursuit predators overheat at midday [45,46]) to determine capture
efficiency. During predictable daily periods when predators are inactive or have low hunting
success, prey can access resources in otherwise dangerous areas (temporal refuges). These
factors also affect prey’s ability to detect [47] or respond [48,49] to risk.
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 3

CellPress logo


Table 1. Evidence for spatially and temporally predictable risk operating simultaneously across diverse systemsa

System Predator Prey Cycle(s) of risk Cycle(s) of constraint Spatiotemporal response Refs

Marine Carnivorous zooplankters,
fish, birds (various
species)

Zooplankton
(various species)

Lunar (light levels) (Not measured) Alter habitat use to
use dangerous
resource-rich places
during safe times (‘lunar
vertical migration’)

[52,53]

Sharks, fishes, marine
mammals (various
species)

Fishes, krill,
copepods, jellyfish,
zooplankton
(various species)

Diel (light levels) (Not measured) Alter habitat use to
use dangerous
resource-rich places
during safe times (‘diel
vertical migration’)

Reviewed in
[88,89]

White sharks
(Carcharodon carcharias)

Cape fur seals
(Arctocephalus
pusillus)

Diel (light levels),
tidal (water depth),
seasonal (weather,
reduced availability
of alternative prey)

Seasonal
(reproduction,
vulnerable juveniles)

Employ group swimming,
reduce surfacing,
increase vigilance in risky
times and places, and
alter time and duration of
foraging to minimize risk
exposure

[108,109]

Shark species (various),
killer whales (Orcinus orca)

Elephant seal
(Mirounga
angustirostris)

Diel (light levels) x
seasonal
(photoperiod)

Seasonal (migration,
resources)

Alter habitat use to use
dangerous resource-rich
places during safe times;
are more risk-adverse
during periods of better
body condition

[36]

Whitetip reef sharks
(Triaenodon obesus),
tawny nurse sharks
(Nebrius ferrugineus)

Bony herbivorous
fishes (various)

Tidal (water levels) (Not measured) Behaviorally mediated
trophic cascade occurs
due to interactions
between reef topography,
tidal oscillations, and
shark hunting behavior,
creating predictable ‘hot
spots’ of fear on the reef
where herbivores refrain
from feeding

[44]

Tiger sharks (Galeocerdo
cuvier)

Loggerhead
turtles (Caretta
caretta)

(Not measured) Seasonal
(reproduction,
temperature, foraging)

Did not alter activity to
reduce risk as constrained
by biotic and abiotic
factors

[12]

Tiger sharks (G. cuvier) Dugongs (Dugong
dugon); bottlenose
dolphins (Tursiops
aduncus); green
sea turtles
(Chelonia mydas)

Seasonal
(migration)

Body condition
(turtles)

Alter habitat use to use
dangerous resource-rich
places during safe times;
for turtles, degree of
risk-taking was mediated
by body condition

[75,110,111]

Fresh
water

Carnivorous zooplankters,
fish, birds (various
species)

Zooplankton
(various species)

Diel (light levels) (Not measured) Alter habitat use to
use dangerous
resource-rich places
during safe times (‘diel
vertical migration’)

Reviewed in
[112]

Fishes (various species);
predacious invertebrates
(various species)

Daphnia,
cladocerans
(various species)

Diel (light levels) (Not measured) Alter habitat use to
use dangerous
resource-rich places
during safe times (‘diel
horizontal migration’)

[113]

Bluegills (Lepomis
macrochirus)

Dragonfly larvae
(Odonata:
Anisoptera)

Diel (light levels) (Not measured) Alter habitat use to use
dangerous resource-rich
places during safe times;
reduced foraging in
dangerous situations

[114]
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Table 1. (continued)

System Predator Prey Cycle(s) of risk Cycle(s) of constraint Spatiotemporal response Refs

Terrestrial Beetle larvae (Drilus
species)

Land snails
(Albinaria species)

(Not measured) Seasonal (estivation) Increased mortality during
periods of estivation

[115]

Golden eagles (Aquila
chrysaetos)

Sage grouse
(Centrocercus
urophasianus)

Diel (light levels) Seasonal
(reproduction, lekking)

Male and female lek
attendance depends on
interaction between risky
times and social and
environmental conditions

[116]

Red foxes (Vulpes vulpes);
northern goshawks
(Accipiter gentilis)

Grey partridge
(Perdix perdix)

Diel (light levels) (Not measured) Alter habitat use to
avoid risky places
during risky times; roost
in tighter groupings in
risky situations

[28]

Birds and weasels
(various species)

Common voles
(Microtus arvalis)

Diel (light levels) (Not measured) Avoid being and
foraging in dangerous
areas during dangerous
times; life expectancy
increased with temporal
opportunism

[117]

Various species Small mammal
species (various)

(Not measured) Seasonal (hibernation) Reduced activity levels
increased survival

Reviewed in
[61]

Various Apennine hare
(Lepus corsicanus)

Diel (light levels),
lunar (light levels),
seasonal
(temperature)

(Not measured) Alter habitat use to use
dangerous resource-rich
places during safe times
of diel and lunar cycles

[118]

Multiple Snowshoe hare
(Lepus
americanus)

Lunar cycle (light
levels)

Seasonal (snowpack) Activity levels around
new moon increase in
snowy (dangerous)
season but not in (safe)
snow-free season; no
temporal change in
habitat use

[119]

Wolves (Canis lupus) White-tailed deer
(Odocoileus
virginianus)

(Not measured) Seasonal (resources) Alter habitat use relative
to avoid risky places
during risky times;
responsiveness to risk
varies seasonally with
resource constraints

[94]

Wolves (C. lupus), black
bears (Ursus americanus)

Moose (Alces
alces)

(Not measured) Seasonal [reproduction
(rut, calving); snow
cover; vegetation
(forage/cover)]

Altered landscape use
across reproductive
cycle to optimize finding
mates/caring for young,
obtaining resources, and
mitigating predation;
habitat use varied across
diel cycle to minimize use
of dangerous areas in
dangerous times

[120]

Wolves (C. lupus),
cougars (Puma concolor)

Elk (Cervus
elaphus)

Diel (light levels) (Not measured) Occupy vacant habitat
domains, use time to
niche partition activity to
reduce overlap with
predators

[78]

Black bears
(U. americanus)

Coyotes (Canis
latrans), bobcats
(Lynx rufus), foxes
(Urocyon
cinereoargenteus)

Seasonal
(hibernation)

(Not measured) Alter competitive
interactions and space
use to mitigate risk
from bears when not
hibernating

[60]

(continued on next page)
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Table 1. (continued)

System Predator Prey Cycle(s) of risk Cycle(s) of constraint Spatiotemporal response Refs

Cougars (P. concolor) Vicuñas (Vicugna
vicugna)

Diel (light levels) (Not measured) Alter habitat use to avoid
risky places during risky
times; alter movement
speed/direction in risky
situations

[33]

Lion (Panthera leo) African wild dog
(Lycaon pictus)

(Not measured) Seasonal
(reproduction,
vulnerable juveniles)

Shift patterns of space
use to minimize overlap
with predators during
periods with vulnerable
young

[63]

Lion (P. leo) Plains zebra
(Equus quagga)

Diel (light levels) (Not measured) Alter habitat use to use
dangerous resource-rich
places during safe times,
more erratically during
risky situations

[29]

Lion (P. leo) African large
herbivore species
(various)

Lunar (light levels) Seasonal (resources) Shift patterns of
vigilance, grouping, and
space use relative to
patterns of spatial risk
across time;
responsiveness to risk
varies seasonally with
resource constraints

[35]

Large carnivores (various
species)

African large
herbivore species
(various)

Diel (light levels) (Not measured) Vulnerable species alter
habitat use to use
dangerous resource-rich
places during safe times

[30]

Large carnivores (various
species), humans

African large
herbivore species
(various)

Diel (light levels) (Not measured) Reduced spatiotemporal
niches as ‘squeezed’
between natural (active at
night) and human (active
during day) predators

[121]

Humans, European lynx
(Lynx lynx)

Roe deer
(Capreolus
capreolus)

Diel (light levels) ×
seasonal (hunting
season)

(Not measured) ‘Squeezed’ between
natural (active at night)
and human (active during
day) predators; altered
temporal activity patterns
across areas of variable
human versus lynx
activity

[122]

Humans Lion (P. leo) Diel (light levels) ×
lunar (light levels)

(Not measured) Use dangerous areas
(near humans) during
safe times (dark nights)

[93]

Humans Wild boar
(Sus scrofa)

Diel (light levels) ×
seasonal (hunting
season)

(Not measured) Shift habitat use on two
temporal scales to
minimize risk from
hunters outside protected
areas

[31]

Humans Chimpanzees
(Pan troglodytes)

(Not measured) Seasonal (resources) Increase spatial overlap
with humans when
resources are limiting

[104]

aA broad range of studies across systems suggest that perception of a spatiotemporally dynamic landscape of fear is pervasive across the animal kingdom. Here, we highlight
examples illustrating the diversity of temporal cycles of predation risk and prey constraints that can structure prey behavioral decision-making relative to patterns of spatial risk
(see ‘Risk is predictable both in space and time’). This list underscores metrics that require future evaluation, such as examination of more diverse schedules of risk and
constraints (e.g., cycles of temperature, hibernation, weather), monitoring for multiple types of antipredator responses (i.e., vigilance and grouping in addition to spatial
redistribution), and further in-depth evaluation of downstream effects (e.g., individual-, population-, community-level consequences) of prey behavioral decision-making.
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Figure 1. Schematic diagram of the dynamic landscape of fear. In a traditional, static ‘landscape of fear’, prey
perception of predation risk is shaped by spatially varying factors that influence chronic predation risk by constraining
predator activity, predator hunting success, and prey vulnerability. How prey respond to the landscape of fear is
modulated by the pattern of spatial features that affect decisions prey make to optimize fitness. A ‘schedule of fear’
describes temporally structured patterns of perceived predation risk. Prey’s ability to respond to the schedule of fear is
also affected by temporally varying fitness trade-offs. Together, these two components combine to create a ‘dynamic
landscape of fear’ that prey behaviorally navigate to survive in real ecosystems, with downstream consequences for
individual fitness, species interactions and coexistence, and cascading effects on broader ecological processes.

Trends in Ecology & Evolution
Lunar cycles
Lunar cycles moderate nocturnal predator success and prey vulnerability via light levels [50]. For
visual animals, full-moon nights can aid predators in detecting prey [47] and/or prey in detecting
predators [35]. Periodicity in nocturnal brightness can affect predator space use, activity, and
hunting success; for example, noctule bats (Nyctalus noctula) hunt in forests on dark nights
and open grasslands on bright nights [51]. Furthermore, lunar phase can predictably influence
daily [52,53] or seasonal [54,55] prey migration and distribution patterns.

Seasonal cycles
Seasonal periods of vegetation growth or snowfall provide concealment or present obstacles de-
pendent on predator hunting (e.g., ambush versus pursuit) and prey escape (e.g., runner versus
hider) strategies [56,57]. Prey and predator migrations may facilitate seasonal relief through pred-
ator evasion [34,58] or satiation [59]. Other temporal refuges manifest when predators or prey
enter periods of dormancy [60,61].

Seasonal cycles of resource availability and reproduction also shape prey vulnerability and alter
risk–foraging trade-offs [56,57]. Pregnant or lactating females engage in more risky behavior to
increase energy intake [62,63], females with vulnerable offspring seek safer habitats [64], and
males prioritize mating opportunities over risk mitigation [65]. Predators likewise face higher nu-
tritional demands during their reproductive cycles, while also being restricted in movement
when rearing young, creating periods of risk and safety for prey [66].

Predictions from a dynamic LOF
Considering both spatial and temporal dimensions of risk and response simultaneously gener-
ates a set of predictions that differ from those put forth using an exclusively spatial lens. Next,
we propose a set of testable predictions to stimulate future research.
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 7
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Figure 2. Consequences of navigating a dynamic landscape of fear. Case studies demonstrating how sensitivity to
dynamic predation risk alters predicted non-consumptive effects on prey and the broader ecological system. Here, we focus
on a single temporal cycle of risk (diel changes in luminosity), using Northern Hemisphere carnivore–ungulate systems as an
example. Orange lines represent behavioral responses to each risk scenario ('safe' scenarios boxed in blue; 'risky' scenarios
in red) by time period (time of day or season). Unbroken and dashed blue lines indicate non-consumptive effects on prey
fitness and lower trophic levels, respectively. (A) Gray wolves (Canis lupus) hunt crepuscularly. Elk (Cervus elaphus) enter
risky places during the day or night, which are wolf 'downtimes'; this may explain observed minimal effects of predation
risk on elk stress levels, body condition, or pregnancy rates [11]. (B) Eurasian lynx (Lynx lynx) are nocturnal and hunt most
successfully in forested habitats. During summer, European roe deer (Capreolus capreolus) avoid high-risk forests at night,
instead utilizing these areas during safe daytimes, incurring minimal costs. However, when winter limits resource availability,
deer must use high-risk areas day and night. Constant risk exposure increases deer stress levels, potentially increasing non-
consumptive mortality [32]. (C) White-tailed deer (Odocoileus virginianus) avoided locations where gray wolf presence was
simulated during periods when wolves would be active (dawn/dusk) but foraged in ‘risky’ patches during the day (safe
times). Subsequently, deer landscape use was homogeneous and there were no cascading effects on plant biomass or com-
munity composition between safe or dangerous locations [38]. Abbreviation: BMTC, behaviorally mediated trophic cascade.

Trends in Ecology & Evolution
Interactions between spatially and temporally predictable risk
As noted earlier, predictability enables prey to anticipate and proactively mitigate predation risk
[2,3,28]. Risk is predictable if it is chronic in space or periodic in time; the degree of predictability
in either dimension varies from totally unpredictable to highly regular. Risk may vary predictably in
one, both, or neither dimension (space and time), depending on interactions between organismal
and environmental processes. Here, we consider scenarios arising at the four extremes of low
and high risk predictability in space and time (Figure 3).

Risk is predictable in space but unpredictable in time (static LOF)
In this scenario, prey can reduce predation risk by proactively avoiding predators in space and/or by
increasing antipredator behaviors such as vigilance or grouping in risky locations, but cannot change
the timing of their landscape use to more safely access risky places (Figure 3). This situation should
arise when predators rely on static landscape features to ambush prey or are constrained to certain
portions of the landscape by competition or risk from their own predators [67]. Responses to fixed
spatial patterns of risk have been documented in diverse circumstances (e.g., [2,13,68,69]). Where
risk avoidance has costs (e.g., costly mitigation behaviors such as vigilance, or when resource
scarcity in safe places forces prey to use risky ones), these behavioral decisions can result in non-
consumptive effects on prey fitness [70,71]. Where prey distribution is restricted in space by
predators, prey impacts can likewise become spatially constrained, resulting in altered foraging
patterns (e.g., [69]) or behaviorally mediated trophic cascades (e.g., [72–74]).

Many studies documenting spatial patterns of predation risk and prey response have often been
conducted over short timeframes, potentially falling within windows of elevated predation risk
(e.g., during periods when migrating predators are present [34,73,75]) or reduced risk–resource
8 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Box 1. Caveats and further considerations

The range of fitness-enhancing activities that are possible within spatiotemporal refuges from predation risk depends on
the length and frequency with which refuges manifest. For instance, foraging can occur within hourly or daily spatiotempo-
ral refuges, whereas reproductive opportunities may manifest on monthly or seasonal scales. Prey may not be able to ex-
ploit spatiotemporal refuges if they are too narrow or infrequent (e.g., in multipredator systems [108,123]), such that strong
non-consumptive effects may still occur. Overall, the costs associated with temporal responses to risk are not well ex-
plored under field conditions, which currently limits our ability to predict downstream consequences on individual fitness,
population dynamics, and community structure (e.g., [10,99,105]).

While spatiotemporal partitioning of activity presents opportunities for prey to mitigate risk, evolutionary and ecological
constraints likely limit the ability of prey to ‘reschedule’ their activity patterns to optimize fitness trade-offs (see Outstanding
questions). This may occur, for example, where spatial or temporal activity shifts to avoid predation result in increased
overlap with competitors. Prey may also lack the morpho-physiological flexibility to adjust activity patterns to avoid pred-
ators, incurring additional costs (e.g., thermal stress) [47,49]. In addition to the predictability of risk, the choice of whether
to rely on proactive or reactive antipredator behaviors is modulated by prey traits, such as relative body size and morphol-
ogy (e.g., weapons that improve outcomes in direct interactions with predators reduce the need for proactive avoidance)
and escape tactics, as well as the frequency and lethality of predator encounters (e.g., if the risk of encountering or being
killed during an encounter with a predator is low, then prey may rely less on proactive avoidance [67]).

Furthermore, adjustments by prey should encourage counter-adjustments by predators, both ecologically and evolution-
arily (e.g., [91]). The ability for prey to use spatiotemporal refuges to enhance their own fitness should, for instance, select
for predators to become less predictable, potentially leading to arms races.
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trade-offs (e.g., within a single season [21]). Spatial patterns of risk and the resulting strength of
predator effects may exhibit more pronounced temporal variation when examined across longer
timescales.

Risk is predictable in time but not in space (schedules of fear)
Here, prey can more safely use the same areas as their predators by proactively avoiding risk in
time. Prey should increase their activity levels or reduce risk-mitigating behaviors during safe pe-
riods when predators are resting [28,40,47], hibernating [60], migrating [34,75], or have lower
hunting success [45,46,50]. By accessing heterogeneously distributed resources within temporal
refuges, prey may reduce exposure to dangerous risk–resource trade-offs (Figure 3); however,
they lack safe predator-free spaces. The strength of resulting predator effects should then be
modulated by the length and frequency of temporal refuges (e.g., [17,18,27]). We expect this sce-
nario in comparatively spatially homogeneous environments (e.g., pelagic systems [76]) or where
prey experience relatively uniform spatial risk (e.g., from some active-pursuit predators [23,77];
but see [11]). Prey may also modulate their activity levels through time to minimize predator en-
counters in multipredator systems where predators are ubiquitous and prey lack spatial refuges
(e.g., [78,79]). While little is currently known about the downstream effects of temporal shifts in
behavior under field conditions, prey should in principle incur fewer costs and distribute their eco-
logical impacts across broader areas by accessing fitness-enhancing opportunities during tem-
poral windows of lower risk.

Spatial and temporal predictability are both low
Under these circumstances, prey are unable to avoid risk in space or time, or to proactively mod-
ulate risk-mitigating behaviors (Figure 3). Prey should instead rely almost exclusively on reactive
antipredator behaviors to escape from predator encounters [1,80]. Low spatiotemporal predator
predictability may occur where multiple predators occupy all spatial and temporal niches [81,82]
or in spatially homogeneous systems occupied by pursuit predators [83]. The inability of prey to
proactively respond to predictable risk may also manifest where prey simply lack the capacity to
perceive or recall predator cues (see Outstanding questions). If predator encounters are frequent,
reactive antipredator behaviors can reduce individual fitness through physiological responses
such as heightened stress [84,85] and reduced food intake [1,70,85]. Some studies suggest
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 9
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Figure 3. Predictions from a dynamic landscape of fear (LOF) framework. Perceived predation risk may vary
predictably in space, time, both, or neither, with implications for the dynamics of prey response. Here, we consider four
scenarios and accompanying predictions at the extremes of low and high risk predictability in space and time. When
predation risk is predictable in space and time, prey can use spatial and/or temporal refuges to proactively mitigate risk.
For instance, prey access otherwise dangerous areas during safe predator ‘down-times,’ such that antipredator behavior
has minimal fitness costs. When risk is predictable in space but not time, prey proactively should adjust their spatial
activity (e.g., alter distribution patterns or increase location-based vigilance or grouping) to minimize risk, but should not
change their temporal activity. Prey are restricted to portions of the landscape and, if spatial risk avoidance is costly, there
may be fitness consequences (i.e., non-consumptive effects). When risk is predictable in time but not space, prey should pro-
actively adjust their temporal activity (e.g., alter activity levels or timing of vigilance or grouping) but use the same areas as their
predators. Prey access all of the landscape, but incur costs if the frequency or length of temporal refuges is insufficient to en-
able fitness-enhancing activities. When risk is unpredictable in either dimension, prey cannot proactively minimize predator
risk by changing their activity or distribution. Instead, prey rely on reactive antipredator behaviors to escape predator encoun-
ters. The strength of prey response to perceived risk is further modulated by temporal cycles of constraints such as repro-
ductive cycles, seasonal weather patterns, or periodic increases in competition. During times when prey are
unconstrained, they are able to respond strongly to mitigate risk; when prey are constrained, they may react less to spatio-
temporally structured predation threats.
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that consumptive effects (rather than non-consumptive effects) dominate when predators are
unpredictable in space and time [77,86]. As such, while behaviorally mediated effects on the
wider community might be limited if prey use the landscape without regard for predator activity,
density-mediated cascades may still occur (e.g., [87]).
10 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Risk is predictable both in space and time
As spatial patterns of predator activity fluctuate across temporal cycles, prey should proac-
tively minimize risk exposure by using spatiotemporal refuges to forage and mate (Figure 3).
A growing body of evidence documents prey antipredator responses to spatiotemporally pre-
dictable patterns of predator activity across a wide variety of environments and taxa (Table 1).
A flagship example is diel migration, which occurs in animals ranging from zooplankton
[88,89] to zebra Equus quagga [29], where prey move from low-risk/low-resource areas to
high-resource but otherwise risky areas when sunlight conditions create temporal refuges
from visually hunting predators. In addition to avoiding dangerous places at dangerous
times, prey may also modulate activity levels [90,91], speed and direction of movement
[33], and vigilance and group size [35] to reduce predator-encounter probabilities when
they are forced to enter risky situations. Similar patterns of spatiotemporally variable antipred-
ator decision-making occur across tidal [41,43,44], lunar [35,53,92], and seasonal or
reproductive [34] cycles of predator activity and many prey modify spatial activity in response
to simultaneous cycles of risk with different periodicities (e.g., diel/lunar cycles [93]; diel/sea-
sonal cycles [31]) or created by multiple predators [78,94] (see ‘When do risk and response
vary across space and time?’).

Given that risk is often predictable in both space and time, the dynamic LOF framework suggests
that the effects of spatial variation in perceived risk on prey populations and communities (via be-
haviorally mediated trophic cascades) may be less pervasive than commonly assumed [9,95–97].
This is because behavioral responses to spatially and temporally varying predation risk can mod-
ulate cascading effects, as exemplified by temperate carnivore–ungulate systems (Figure 2). In
these systems, multiple studies have found that prey sensitivity to spatially and temporally pre-
dictable risk results in negligible net effects on body condition and pregnancy rates [11] and
nonpredation deaths (e.g., from stress, starvation) [32], while also curtailing cascading ecosystem
effects [38]; this is perhaps because prey are able to utilize both spatial and temporal refuges to
access fitness-enhancing opportunities at low risk [11]. The paucity of clear tests of this proposi-
tion from other systems and organisms, however, emphasizes the need for more work on the
topic.

Temporal constraints on prey antipredator response
As the spatial structure of risk can vary across time, so too can prey’s ability to proactively
mitigate risk. Prey may be temporally constrained in their ability to respond to risk, which
can predictably influence antipredator decision-making (and the downstream consequences
of these actions) during certain periods (Figures 1 and 3 and Table 1). Cyclical changes in physio-
logical (e.g., reproductive periods), community (e.g., migrations), or environmental (e.g., seed
masts) factors that affect prey condition can therefore affect behavioral responses to predation
risk (i.e., state-dependent decision-making [36,75,98,99]). For example, loggerhead turtles
(Caretta caretta) take few discernible actions to minimize risk in tiger shark (G. cuvier) home ranges,
due in part to life-history trade-offs involving foraging and nesting, environmental conditions (water
temperature), and human activity [12]. Similarly, roe deer (Capreolus capreolus) are unable to avoid
areas of high predator activity in the winter due to thermal and nutritional constraints [81].

As environmental or social conditions change, so too should prey resource–risk trade-offs and,
therefore, their response to perceived risk. Elephant seals (Mirounga angustirostris), for exam-
ple, prioritize safety (resting in dark lower ocean levels) over energy intake (foraging in more
dangerous upper ocean levels) when fat stores are high but switch tactics when body fat is
low [36]. African ungulates seasonally alter the magnitude of their responses to risk, avoiding
risky areas to a higher degree during the wet season when forage is widely available but
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 11
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Outstanding questions
What trade-offs constrain the evolution
of predator and prey strategies? Prey
should be under strong selection to
avoid risky places and times, while
predators should seek to overcome
spatial and temporal constraints on
hunting behavior. Prey and predators
are undoubtedly limited in their ability
to overcome these constraints by
countervailing selective pressures, but
these trade-offs are poorly understood.

How do prey perceive and process
information about risk? How do prey
acquire knowledge needed to navigate
a dynamic LOF? To what extent is it
innate or learned, either individually
(from experience) or socially (by
observing con- and heterospecifics)?
What is the role of complex cognitive
processes such as learning and
memory?

What spatiotemporal scales govern
prey behavior? Prey are often exposed
to multiple trade-off cycles simulta-
neously (e.g., diel and lunar patterns of
predator activity with seasonal re-
sources constraints). Moving forward,
we need to examine trade-offs across
multiple interacting spatiotemporal
scales to understand prey behavior.

How do prey respond to multiple
simultaneous risk cycles? Prey often
coexist with multiple predators, each
generating unique dynamic LOFs. Does
increasing the diversity of predator
species concentrate prey into more
restricted spatiotemporal refuges and/
or change their antipredator responses
from proactive to reactive? Is the
dynamic LOF less detectable in
multipredator systems? Can differential
sensitivity to layered dynamic LOFs con-
tribute to predator–prey coexistence?

How do prey respond to novel
predation? Humans are decimating
native predator communities and
introducing new predators (including
humans). Is there sufficient plasticity in
evolved prey responses to avoid
novel predators and how do these
tactics differ from those used against
native predators? Are risk landscapes
becoming more homogeneous as
humans replace native predators?
Does this destabilize coexistence,
contributing to species loss?
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prioritizing forage acquisition over minimizing risk exposure during the lean dry season [35].
Without an understanding of these cyclical temporal constraints, ecologists may mistakenly
predict strong risk effects where none occur [3].

Applying the dynamic LOF framework for ecological insights
Logistical constraints havemade it difficult to incorporate both spatial and temporal dimensions in
empirical studies, contributing to the prevalent conceptualization of static spatial patterns of real
and perceived predation risk. Large mammals are particularly intractable for experimentation in
the wild, leaving open questions about the extent to which research on smaller organisms
‘scales-up’ to large animals and landscapes. With technical advances, ecologists are able to col-
lect data on ever-more granular scales, allowing researchers to better match the resolution of
sampling with the biological rhythms and patterns of risk–resource trade-offs [100]. Continually
improving tools (e.g., GPS telemetry, accelerometers, biologgers, camera traps, drones, acoustic
recorders) also expand the breadth of data, for example, by capturing the behavior of multiple
interacting species simultaneously [101–103]. Novel experimental approaches are expanding
the scales at which strong inference is possible [21,72] and sophisticated statistical methods
increasingly enable investigators to surmount the complexity inherent in large observational
datasets [36,83,104]. These and future advances will enhance investigators’ ability to parse
spatial and temporal dimensions of risk and response and test the predictions outlined earlier.
Development of a body of formal quantitative theory would help to further define the dynamic
LOF, probe its premises, and refine its predictions for different organismal and environmental
contexts.

Concluding remarks
Predation risk is dynamic in both time and space and there is a rich tradition of studying each axis
of variation separately. As a rapidly growing literature attests, however, synthesizing the temporal
and spatial perspectives on predation risk may account for much of the observed diversity and
contingency of risk responses [10,11,105]. Here, we offer a framework to guide research,
outlining how an integrated spatiotemporal approach to risk and response clarifies and nuances
predictions about predator effects on prey behavior and its potential population- and community-
level consequences.

Many questions remain regarding risk–resource trade-offs in natural systems (Box 1 and
see Outstanding questions). Given evolving technologies and global change, understand-
ing spatial and temporal patterns of predation risk and prey response has never been
more possible [101,102], or more necessary. Elimination of native predators, restoration
and recolonization of historical predators, human-driven changes in species distributions,
and the increasing intensity and reach of human exploitation are rapidly reshaping ecolog-
ical communities and altering patterns of spatial and temporal activity for both prey and
predators [93,106,107]. Understanding and mitigating the impacts of these transforma-
tions to the risk landscape is crucial for protecting animal populations and the ecosystems
they inhabit.
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